
William Smith
Partner Program Manager 
Jamf 

@talkingmoose  Jamf Nation 
      MacAdmins Slack 
      Mastodon.social

NOT�a�

software�

development
�

engineer

Administrators

End�user�experience

Software�developers

End�users

William Smith
Read Me

William Smith
Hi everyone!

I'm William Smith, a Partner Program Manager with Jamf.

I'm not a software development engineer and likely most of you aren't either.

Most of us are administrators consuming software that helps our end users consume the software they need to do their jobs.

We happen to sit in a position between software developers and our end users that can give us perspective into both worlds. Software developers create products we use and likewise, we give software developers feedback about their products, hoping they'll make them better to use.

Likewise, we administer our end users' computers and software in an effort to facilitate their work, and they respond to us with tickets! Tickets are quite often the only way we allow our end users to communicate their problems with our administration. Does that sound familiar to anyone?

I hope we can agree that whether you're a software developer or an administrator, we share the same goal of trying to craft and improve the end user experience.



Do not use permanent marker !!!

How�a�Feature�is�Born

William Smith
Read Me

William Smith
I want to take what you already know as an administrator who delivers a product to consumers — in other words, the support you provide your end users — and give you some perspective on what happens on the software development side by explaining how a feature is born.



Do not use permanent marker !!!

How�a�Feature�is�Born
“Why�don’t�they
add�my�feature?
It�should�be�easy!”

“This�software�isonly�half-baked!”

“I�don’t�know�why
I’m�paying�to�beta�test
their�software!”

William Smith
Read Me

William Smith
My goal for today is to help answer some questions or address some thoughts you've probably had like these:

"Why don't they add my feature? It should be easy!"

"This software is only half-baked!"

"I don't know why I'm paying to beta test their software!"

Has anyone here ever thought that?

Does anyone have any thoughts about these questions or similar questions before I start?

To show you some of what a software developer might do when planning features for a product, I'm going to use a tool they might use to track their progress. Think of my presentation today as the product I'm delivering to you.



Do not use permanent marker !!!

BACKLOG DOING REVIEW DONE

William Smith
Read Me

William Smith
This is called a Scrum board. It's a whiteboard with lots of sticky notes. Quite often hundreds of sticky notes!

Each column represents a phase of progress with everything starting in the backlog. If a feature is chosen for development, its progress is tracked from left to right until it's done. Today, most Scrum boards are electronic.

The first items that go on a Scrum board are "themes" or "epics". An epic is just another name for a really big story.

I have five epics for you and they all follow this format.



Do not use permanent marker !!!

BACKLOG DOING REVIEW DONE

William Smith
Read Me

William Smith
First, I want to tell you about my experience working with different software developers. As your presenter, I want you to know that I have experience with a few companies that have developed software so that you, the audience, will have some confidence in what I'll be telling you later.

And, I'll add some story points that I want to cover about my experiences. I'll use yellow sticky notes for each of these.



Do not use permanent marker !!!

BACKLOG DOING REVIEW DONE

William Smith
Read Me

William Smith
And, I'll add some story points that I want to cover about my experiences. I'll use yellow sticky notes for each of these.

Next, I want to explain a couple of methodologies for developing software.

They're not workflows. They're not processes. They're not project tracking systems.

Instead, they're frameworks, beliefs, sets of core values that've been around for more than a couple of decades.

It's important you understand each one so that you have a foundation for understanding Scrum later.



Do not use permanent marker !!!

BACKLOG DOING REVIEW DONE

William Smith
Read Me

William Smith
I'll put my story points for methodologies on orange sticky notes just to make things easier to see.

And what is Scrum?

This is probably the most common methodology that follows something called an Agile framework.

I want you to understand how scrum works and its core principles.



Do not use permanent marker !!!

BACKLOG DOING REVIEW DONE

William Smith
Read Me

William Smith
There's a group of people who work together, and they're called the Scrum team.

A Scrum team is what makes Scrum work.

We're going to look at the people who make up the Scrum team and see how each member plays their role in taking a concept that's first expressed as a story, then defined as a feature, and finally developed into working software.



Do not use permanent marker !!!

BACKLOG DOING REVIEW DONE

William Smith
Read Me

William Smith
The last epic I have is really about you.

As a consumer of software, you likely want to get your feature requests turned into working features. You've invested time into learning how a software title works and behaves, and you'd rather not have to change to another product just to get a feature, especially if the other product is missing features you're currently using.

I'll wrap up with what you can do to influence software development.



Do not use permanent marker !!!

BACKLOG DOING REVIEW DONE

William Smith
Read Me

William Smith
As we proceed through our work, we update the Scrum board to show what's in progress.

Let's get started.

I'm going to take my first story points over to another board where I can go into detail about each one. 



Automated Pages
Keep your eye on the project manager

• Weekly grocery store ads for newspapers or mailings
• A system that can automatically build 90% of the ads
• $1 million to build a system in one year
• Complexity and scope creep
• The developer sold our business a year later

William Smith
Read Me

William Smith
My first experience with software development was twenty-five year ago, I worked for a company called Fleming Foods. Fleming was a food wholesaler, which is where hundreds of grocery stores across the United States got their food to sell to customers.

I supported an advertising department of about 75 people and each week we put together the grocery store ads for all the stores — hundreds of 4-page, 8-page, or more full color circulars. I can tell you today their design hasn't really changed in 25 years.

My boss, who was the director of advertising technology, envisioned an automated system that could take electronic templates and automatically build 90% of these ads. So, he paid a developer $1 million to do just that. They said that to meet all the requirements of the project plan, it would take them a year to build. During that year, he put the thumb screws to them to show some value as quickly as possible.

Over that year, the developer's project manager realized the complexity of that project and what my boss was demanding. There might've been a little scope creep in there too. It turns out he was holding everything together. He left the company and later the developer eventually sold our business to another developer that already had a product, but it couldn't do half of what we wanted. But we had no choice. To sue anyone would cost far more than $1 million and we would still had no system.

We learned a few lessons:

• A customer can't wait a year to realize value for their investment.
• There should be transparency to the customer in the work that's happening.



Company X
A project to upgrade every 3-5 years

• Government compliant legal documents
• Mistakes were expensive
• Heavy investment in custom QuarkXPress XTensions
• Upgrades were a 1-2 year project every time
• Developer was acquired and could no longer upgrade	

William Smith
Read Me

William Smith
A few years later I worked for another publishing company, which I'll call Company X because they're still around today.

Company X specialized in producing financial documents such as annual tax reports. If you've ever invested in stock or mutual funds, you've probably received some of their work. The companies we served had a legal obligation to print and mail these books to every shareholder. They're full of financial tables and charts. Our job was to make them look pretty and print them.

But we also had to be very careful of typos because these documents had to be compliant with the Securities and Exchange Commission (SEC). Incorrect information could lead to a reprint and another mass mailing, which was very expensive.

We used QuarkXPress 6 and lots of custom XTensions. I recall one of the XTensions was more expensive than the cost of QuarkXPress itself. We contracted an XTension developer called ALAP to create our custom and highly complex software.

Upgrades to anything were seen as a potential point of failure, so once we had a working Mac OS X production platform, all software was frozen. And for 3-5 years, those systems were weren't upgraded. No Mac OS upgrades, no QuarkXPress upgrades, no XTension upgrades. Nothing changed.

When we couldn't buy refurbished Macs to support our system anymore, that would kick off a very expensive 1-2 year project to upgrade all software and computers.

During one of those periods, Quark bought ALAP. They now owned the code to our custom XTensions but had no desire to continue our custom work. We didn't see it coming. And we had no way to upgrade and no legal recourse.

Lessons learned:

• Don't treat computers like appliances
• It's cheaper to invest in more frequent updates rather than long-term projects



Office for Mac
Always behind Windows

• Office ’97 / Office ’98 for Mac
• Office XP / Office X for Mac
• Office 2000 / Office 2001 for Mac
• Office 2003 / Office 2004 for Mac
• Office 2007 / Office 2008 for Mac
• Office 2010 / Office 2011 for Mac
• Office 2016 for Windows and Mac 
• MacBU ported Office code to Mac
• “This doesn’t make sense!”
• Started converging for Office 2008

William Smith
Read Me

William Smith
This story point's interesting because it's about a software development success called refactoring, which means to change the structure of the code without changing its functionality. It's like changing the design of the engine of a car without changing the car's design. But this is also a software development warning.

Twenty-five years ago Microsoft released Office 97 for Windows. (It took 46 floppy disks to install if your computer didn't have a CD-ROM drive.) A year later, they released Office 98 for Mac. They had a quick upgrade to Office XP for Windows followed by Office X for Mac, which was the first suite that supported Mac OS X. 

And then, they released Office 2000 for Windows, again followed a year later by Office 2001 for Mac.

Their releases followed the same cadence for the next several years where a new version of Windows was released about every 3-4 years followed by a new version for Mac just a year later. The Apple community had grudgingly come to accept their new version of Office would always come a year later and always with fewer features.

But for 2016, the cadence changed. What happened?

Microsoft developed the Office 97 suite  and the Macintosh Business Unit at Microsoft had to wait until it was complete before they could port the Windows code to Mac. That's why it was always a year later. On top of that the MacBU was releasing Mac-only features. The code bases were diverging away from each other. This went on for 10 years until for Office 2008 they said, "This doesn't make sense."

With that release, they started converging the code bases, but it took them another 10 years to move back toward each other. What was released for Office 2016 was a common code base they could use not only for Windows and Mac, but also iOS and Android.

Lessons learned:

• Dependencies like waiting for the Windows version to ship delay value to other customers
• Doing your own thing leads to technical debt, which means there's a cost to not fixing problems right away
• And technical debt is expensive to pay off

It took Microsoft 10 years to do it.



Choice changes XML
Worth the effort?

• Open since 2015 with more than 200 upvotes
• Command line option to change an installer’s 

selected choices when installing software
• My opinion: It’s not worth it
• What would customers expect?

William Smith
Read Me

William Smith
I've been with Jamf a little more than seven years. It wasn't until I started working there that I better understood how software development works.

I'm about say some things folks will find controversial. And I want to be clear up front that I'm speaking as myself not a representative of Jamf. I have no control over this and no insight to share on behalf of Jamf. My opinions are my own.

On Jamf Nation, we've had a feature request open since 2015. It's requesting we add support for a choice changes XML file when installing a package. If you're not familiar with this feature, it's a command line option that lets you check or uncheck installable items. In the case of the Office for Mac installer, for example, I can choose to deploy the package without installing OneNote or OneDrive.

It's a really handy option. It has over 200 upvotes, and there's a little tag that says "Reviewed", which means someone at Jamf has clearly read this feature request. Even munki has had support for a choice changes file for years. But why hasn't Jamf implemented this feature?

Here's my opinion: It's not worth it. The value our customers would get out of this feature is minimal compared to the value of other features we could be implementing. More than once, I've asked customers, "How many installers can you think of that have custom install options that you can check or uncheck?" I've personally never been able to think of five. I know of Office for Mac, Cisco AnyConnect, and McAfee, which a lot of our customers deploy.

But I personally can't think of many more installers that offer choices. I would imagine our research hasn't found many installers either. And while it's not a baked-in solution, Jamf Pro does support running scripts that could support choice changes. That's not a great option, but it's an available option.

And remember that munki is a mostly command line tool. It's easy to code a solution when all you're doing is writing text. But to implement a feature like this in Jamf Pro also requires creating an interface. As a customer, what would you expect?

Would a simple field where you can paste in the XML work? What if you don't know how to write the XML? Wouldn't it be nice if Jamf Pro could read the package as you're uploading it and extract the choices for you so that all you have to do is select the ones you want? Sure!

But that requires writing more code because macOS has the only command line tool to do that. And Jamf Pro only runs on Windows or Linux. Maybe the Jamf Admin tool could do it, but it's been deprecated.

Implementing a feature like this would take more development time than most folks realize. And when it's finally in the product, how much would it really get used?

Lessons learned:

• What sounds like a simple feature may require heavy investment of time and effort to implement
• Implement only those features that will yield the highest return on investment
• Don't implement a feature to simply be feature-complete



macOS releases
In it for the long-haul

• Erase All Content and Settings!
• Annual releases | Mac OS X Mountain Lion in 2012
• Apple file system changes | OS X El Capitan in 2015

William Smith
Read Me

William Smith
Finally, let's look back at what we've seen with Apple. This is a fantastic example of today's software development methods.

In macOS Monterey, we finally got Erase All Content and Settings. Hallelujah!

But why did it take so long? Especially since iOS has always been able to do it? Here's part of it.

Apple used to deliver a new operating system about every two years. Then, in 2012 they moved to annual releases. It was with El Capitan in 2015 that they started making significant changes to the operating system.



macOS releases
In it for the long-haul

• Erase All Content and Settings!
• Annual releases | Mac OS X Mountain Lion in 2012
• Apple file system changes | OS X El Capitan in 2015

William Smith
Read Me

William Smith
Here's a slide I made for a blog post a while back, and it it gives a chronological overview of what happened leading up to Erase All Content and Settings.

Does anyone remember rootless? What is this System Integrity Protection!? Oh noes, it's the end of my ability to administer my computers! It turned out not to be that dramatic, but it was extremely important because it was just a step in a series of steps that had to happen first.

But what's important understand is that each year offered customers more and more value. It wasn't just six years of hidden development leading up to Erase All Content and Settings. We soon got a new and improved file system, that later supported the --eraseinstall option for startosinstall. macOS Catalina and Big Sur made installations more secure by separating the OS from user data and then cryptographically signing the volume. And only with all that in place could we then get Erase All Content and Settings.



macOS releases
In it for the long-haul

• Erase All Content and Settings!
• Annual releases | Mac OS X Mountain Lion in 2012
• Apple file system changes | OS X El Capitan in 2015

William Smith
Read Me

William Smith
I've left out a lot other contributing factors, but we can see Apple had a long-term vision. Customers don't get to see that long-term vision 'til after the fact in hindsight, and I'm sure there's a lot more to it that we won't see for years to come. They could only have accomplished this by releasing more frequently and showing short-term benefits in addition to the long-term vision of everything combined.

Lessons learned:

• Changes are rarely arbitrary and standalone
• Making a feature like Erase All Content and Settings takes a lot more work than you might think
• Executing a long-term plan should still show short-term benefits



Do not use permanent marker !!!

BACKLOG DOING REVIEW DONE

Lessons Learned 
■ A customer can’t wait a year to realize value for their investment 

■ Invest in short-term updates rather than long-term projects 

■ Dependencies delay value to customers 

■ Doing your own thing leads to technical debt 

■ Technical debt is expensive to pay off 

■ What sounds like a simple feature may require heavy investment 

■ Implement features that will yield the highest return on investment 

■ Changes to software are rarely arbitrary and standalone 

■ Executing a long-term plan should still show short-term benefits

William Smith
Read Me

William Smith
Whether working for, working with, or simply using the software made by those companies, I've learned a lot about bad practices, good practices, and some hard facts about developing software.

Here's a recap of what I learned.

As consumers we don't expect to pay for software today and then receive it later. If we're buying custom software or paying a subscription to use software, we expect that it'll continuously improve over short periods of time — adding new features and fixing bugs. We're no longer patient to wait for new features every 2-3 years and bug fixes every 3-4 months. That's what used to happen 10-15 years ago.

Developers have moved from PROJECT management to PRODUCT management. That's what the rest of my presentation's going to cover.

Let's start with an understanding of a couple of methodologies and explain the differences. 



Project management
Traditional

• Designing a computer, remodeling, or moonshots

William Smith
Read Me

William Smith
How many of you have ever been part of a formal project — and what I mean by that is you were part of a project group that had a project manager and there was a deadline to complete the project?

What you likely experienced was the traditional Waterfall methodology of project management.

This is the traditional methodology not just for developing software but delivering any kind of project whether it's designing a new computer, remodeling a kitchen or entire house, or sending someone to the moon. And the bigger the organization, the bigger the bureaucracy.



Requirements

Planning

Design

Implementation

Testing

Release$

William Smith
Read Me

William Smith
Here's what that methodology might look like. And it makes sense on the surface.

The first part of your project begins with defining the requirements. If you've ever been part of a project, this is really interesting at first, until you have to sit around for several hours listening to everyone else's requirements that really have nothing to do with yours.

Can anyone tell me something usually happens during this phase?

Everything plus the kitchen sink gets thrown in.

Next, comes planning:

Do we have a deadline we have to meet?
Who owns each part of the project?
What are dependencies?
How much will it cost?
Can we eliminate some requirements?

Someone then has to take all that and decide what the product will look like and how it'll function — step-by-step.

Software engineers are then handed the designs and told, "Here, make this!"

When pieces of it are complete and again when the whole project is finished, the owners test. They find bugs and send them back to be fixed.

And once everything is fixed, the software finally gets released. Keep in mind that when you release, this is when see value for the money you've invested. Payout!

The stakeholders, who are generally directors or vice presidents, love this methodology because they see a solution and when it'll be in their hands. They can  predict things, promise to customers, and plan budgets.



Requirements

Planning

Design

Implementation

Testing

Release

!X
X
X
X
$X

William Smith
Read Me

William Smith
But what happens when something in the waterfall changes?

Let's say you've already written some code and you're in the middle of bug fixes and the requirements change.

That means all your planning, designing, implementation, and testing are at risk of being partially or completely thrown out the window.

You've already spent part of your project's budget. There are only a few things you can do:

Ask for more money to complete the project
Ignore the new requirements and delay them until version 2.0
Remove unimplemented requirements and replace them with the new ones
Or scrap the entire project and cut your losses

And it's not just with changing requirements. Maybe your planning was faulty and you have to change that. Or the design doesn't work as expected. Or the developers misinterpret the design during implementation.

Changing the project before it's released introduces the possibility of higher cost, lower value, or greater risk. Not to mention you still haven't received value from actually releasing the product yet.



Project management 
Traditional

• Designing a computer, remodeling, or moonshots
• NASA — discovery, scoping, documentation,  

development, testing, and launch
• Meetings, planning, strategizing, and sign-offs
• Fuji-Xerox tried NASA’s method
• Quality dropped. Failure rates rose. Delivery tanked.

William Smith
Read Me

William Smith
I mentioned bureaucracies a bit ago.

NASA was known for their phase-gate process — kind of a project management on steroids. They went through phases during discovery, scoping, requirements documentation, development, testing, and launch.

Every phase had its own series of meetings, planning, strategizing, and sign-offs before the next phase could begin.

In the early 1980s, Fuji-Xerox came to study NASA's phase-gate approach to implement back in Japan.

What they discovered was their quality dropped. Failure rates went up. And delivery tanked. They quickly went back to their own way of doing things. It turned out as big as NASA was, it was introducing a lot delay and risk in its programs.



William Smith
Read Me

William Smith
And who recognizes what this is?

It's a Gantt Chart, which is used for planning and tracking a project's progress. You might call it a project roadmap.

It was name after Henry Gantt when he invented in 1910 — more than 100 years ago. This is 100-year-old technology that many projects still rely on today.



Project management 
Traditional

• Designing a computer, remodeling, or moonshots
• NASA — discovery, scoping, documentation,  

development, testing, and launch
• Meetings, planning, strategizing, and sign-offs
• Fuji-Xerox tried NASA’s method
• Quality dropped. Failure rates rose. Delivery tanked.

• A map is not the terrain
• ‘No plan survives first contact with the enemy.’
• Standards are often lower at the end of a project  

than the beginning.

William Smith
Read Me

William Smith
There are problems with roadmaps.

The biggest of which is a map is not the terrain. While it may show you the quickest way to get from point A to point B, it won't do a good job showing you the height of the mountains or depths of the oceans or the ruggedness of the land between you and your destination.

And there's a military saying that goes "No plan survives first contact with the enemy." In other words, the moment you start your plan, it's anyone's guess how it'll end.

If you think about it, the worst time to make any prediction about how or when a plan will end is before you've even started the work.

Yet… this is how many projects are managed, and the organization's leadership is making promises to customers based on these plans.

But have you ever noticed, though, that the bigger and more complex a project plan is within an organization, the more LIKELY it is to succeed? Does anyone know why that is?

Because that's what upper management wants to hear. And that's what the project owners will tell them regardless of whether it went over budget, whether features were cut for time or money, or more valuable features that could've been implemented were delayed for version 2.0.

Standards are often lower at the end of a project than at the beginning.



Product management 
Reimagined

• Microsoft 365 16.9 in January 2018
• Microsoft 365 16.75 in July 2023
• macOS frequent delivery has forced third-party 

developers to update and release more frequently
• Lost market share, leave the market, or die

William Smith
Read Me

William Smith
So, what's the alternative?

This is where a shift in thinking happens from PROJECT management to PRODUCT management.

No longer is Microsoft Office for Mac developed as Office 2004 with new features, later redeveloped as Office 2008 with more new features, and then redeveloped again as Office 2011 with even more new features. Instead, its major version number froze at 16.x back in 2018, and it has incremented each month from 16.9 back then to 16.75 today. And its product name is now just Microsoft 365.

The product suite hasn't been developed as a project for more than five years.

And thanks to macOS iterating each year, third-party developers have been forced to find ways to iterate their software more frequently. Or lose market share, or get out of the market, or die.



Agile Manifesto 
We are uncovering better ways of developing 
software by doing it and helping others do it. 
Through this work we have come to value: 

Individuals and interactions over processes and tools 
Working software over comprehensive documentation 

Customer collaboration over contract negotiation 
Responding to change over following a plan 

That is, while there is value in the items on 
the right, we value the items on the left more. 

https://agilemanifesto.org/

William Smith
Read Me

William Smith
The methodology that supports PRODUCT management and more frequent releases is called "Agile".

"Agile" is a philosophy. What I'm showing you here on screen — The Manifesto for Agile Software Development — is everything that defines agile. Anything else you may hear or read about Agile is just commentary.

It was written and signed by a group of software developers back in 2001, who called themselves The Agile Alliance, as an alternative to documentation driven, heavyweight software development processes like Waterfall.

It says they have come to value:

Individuals and interactions over processes and tools
In other words, let's not put something between us. Instead our team and the product owners should routinely meet face-to-face so that we share common dialog, and we can clarify any misunderstandings.
 Working software over comprehensive documentation
That means "Don't give us pages and pages of documentation about what you want." Instead, we'll take the story you give us from our conversations and start there. And as we develop the software, we'll keep meeting face-to-face to keep refining it.
 Customer collaboration over contract negotiation
Contracts that define what developers will deliver are usually more than 50% boiler plate language for legal purposes. No one reads them, yet everyone signs off assuming someone else has. Getting feedback from a customer during the development process is far more valuable.
 Responding to change over following a plan
Plans are not perfect, especially at the beginning. We'll discover things along the way. Let's develop iteratively with each other and constantly check our work so that we can course-correct as needed.

And the final line of the manifesto says, "While there is value in the items on the right, we value the items on the left more." In other words, we're not throwing out the old ways of working, but rather, they have their place.



Principles behind the Agile Manifesto 
Our highest priority is to satisfy the 

customer through early and continuous 
delivery of valuable software. 

Welcome changing requirements, 
even late in development. Agile 

processes harness change for the 
customer's competitive advantage. 

Deliver working software frequently, from 
a couple of weeks to a couple of months, 

with a preference to the shorter 
timescale. 

Business people and developers 
must work together daily 
throughout the project. 

Build projects around motivated 
individuals. Give them the environment  

and support they need, 
and trust them to get the job done. 

The most efficient and effective method 
of conveying information to and within 
a development team is face-to-face 

conversation. 

Working software 
is the primary measure of progress. 

Agile processes promote sustainable 
development. The sponsors, developers, 
and users should be able to maintain a 

constant pace indefinitely. 

Continuous attention 
to technical excellence 

and good design enhances agility. 

Simplicity — the art of maximizing the 
amount of work not done — is essential. 

The best architectures, 
requirements, and designs 

emerge from self-organizing teams. 

At regular intervals, the team reflects on 
how to become more effective, then 

tunes and adjusts its behavior 
accordingly. 

https://agilemanifesto.org/principles.html

William Smith
Read Me

William Smith
In addition to the Agile Manifesto, they also wrote twelve principles to support it.

I won't read everyone, but I'll point out a couple that are interesting.

I love the second one in the middle column: "The most efficient and effective method of conveying information to and within a development team is face-to-face conversation."

Again, get the paperwork out of the way. We understand your needs better when we can see and talk with each other. Back-and-forth questions and answers, body-language, facial expressions — these will convey meaning much better and much more quickly than emails and project websites.

And I really like the second one in the third column: "Simplicity — the art of maximizing the amount of work not done — is essential."

This isn't saying develop the bare minimum. But it is saying, "Don't over think it, and don't over engineer it."



Product management 
Reimagined

• Microsoft 365 16.9 in January 2018
• Microsoft 365 16.75 in July 2023
• macOS frequent delivery has forced third-party 

developers to update and release more frequently
• Lost market share, leave the market, or die

• Feedback loop
• OODA — Observe, Orient, Decide, and Act

William Smith
Read Me

William Smith
If you haven't picked up on it, agile development is about creating a feedback loop between the development team and the customer. And it's about making that feedback loop as quick as possible. A tight feedback loop mitigates risk during development.

Jeff Sutherland, one of the creators of Scrum, which we'll talk about shortly, provides an acronym: "OODA" from his military experience as a fighter pilot —  Observe, Orient, Decide and Act.

This fairly well describes what an agile development team does over and over. It's programmed into their way of working. And as soon as they act, they're already observing again.



Do not use permanent marker !!!

BACKLOG DOING REVIEW DONE

Lessons Learned 
■ Waterfall development can include a lot of bureaucracy 

■ It assumes the project plan is perfect and won’t change 

■ Any change in the waterfall upsets the rest of the project plan 

■ Value is only realized when a project finishes 

■ Project success is often the result of lowered expectations 

■ “The map is not the terrain.” 

■ “No plan survives first contact with the enemy.” 

■ Agile development encourages tight feedback loops 

■ Observe. Orient. Decide. Act.

William Smith
Read Me

William Smith
I hope you see why agile PRODUCT management is favored over Waterfall PROJECT management. When a project comes to an end, it's done. But a product is always improving.

Here's a recap of what I discussed.

Twenty years ago developers determined that Waterfall project management was failing them and failing the customer, so they put together a simple list of ideas for how to work smarter — The Agile Manifesto. Since then, it has been the backbone of product management. Remember, agile development is a philosophy not a process.

What I'll cover next, though, is a process not only used in software development but in schools, militaries, and governments for all sorts of products. As administrators, I encourage you to look into it — remember, your services to your end users are your products.



William Smith
Read Me

William Smith
Let’s talk about Scrum. This is the agile methodology you'll see 85% of product teams using today.

So, what is this term "Scrum"? What does it mean? Anyone have an idea?

It comes from Rugby. A scrum is where teammates pack tightly together to try to gain possession of the ball. And the goal of rugby is to move the ball down the field and score. Teamwork!



Just the facts, ma’am
Getting perspective

• Fact-based, evidence-based, and transparent

• Feature requests
• Customer interviews and focus groups
• Customer weight
• Subject matter experts
• Discussion boards
• App metrics

• Observe. Orient. Decide. Act.
• No blame

William Smith
Read Me

William Smith
We'll talk about Scrum teams and how they work in a little bit, but first it's important to understand that Scrum is empirical. It's fact-based, evidence-based, and transparent.

Does anyone think a software developer coding management software like Jamf Pro has ever been an administrator?

Not at all. When a coder picks up a task, they don't have personal experience to draw from. They actually rely on somebody else to decide what's the next important thing they should work on.

There is a person who makes those decisions, but I can almost guarantee you they've never been an administrator either and don't have your perspective. So, can anyone think of how they decide what's important?

Feature requests 
Formal feedback from customers through a portal where they can aggregate and deduplicate suggestions 
Customer interviews and focus groups

 In other words, asking the customers not necessarily what they want but what they think, which aren't always the same thing. 

Customer weight 
It's true that a single customer with 100 software licenses will have more weight in the decision-making than 10 customers with five licenses each. That's 100 licenses compared to 50. Money talks. 

Subject matter experts 
These could be customers who're well-known and trusted in their communities. Maybe outspoken. Solution-builders. 

Discussion boards 
Customers don't always give feedback directly to the software developer. Sometimes they prefer to make their opinions known in public with their colleagues. A good developer will embed themselves in the community and they should be open as to who they are. 

App metrics 
Every time you launch a Microsoft Office app, it phones home and ticks up a number — "someone's just started using Excel or Outlook". Your company network can block this communication, but if you're at home or you're not running software like Little Snitch, that ticker goes up. The information is anonymized, so they don't know who just clicked the ticker, but in aggregate it tells them how much their software gets used. And developers can quite often get this information down to the feature level — someone just created a new style in Microsoft Word!

Internally, as part of the development cycle, which is typically two weeks but could be up to a month, the developers themselves have a meeting where anyone in the organization can attend to see what they've just accomplished. They show off their work and anyone's allowed to give feedback.

This is like the behavior a Roomba exhibits when it hits a wall. If what they've developed doesn't jive with what the product owner was requesting, this is their time to observe, orient, decide, and act again. No one gets blamed. This is just how course correction work.

Getting feedback incrementally throughout the development process is far better than waiting to ship the finished product next year and hearing it's not what the customer wanted.



Once upon a time…
Translating facts to stories

• Understand what customers think 
not what they say they want

• “Build credit card fields to capture card number, 
expiration date, and verification code.”

• “I want to pay online.” 

• As a _______________, 
I want to ____________ 
So that _____________. 

• Backlog

William Smith
Read Me

William Smith
Now, how do these empirical data points — these facts about how customers use software — get translated into work for developers? The idea is pretty ingenious.

Developers receive stories. And stories will get refined over the course of development so that developers get a clearer and clearer understanding of what the customer wants. I said earlier understanding what customers think not what they say they want is more important.

Here's an example of what I mean:

A parent is getting ready to bathe their small child and after they've measured the temperature of the bath water, they begin helping the child into the tub.

The child tentatively dips their toe into the water and immediately pulls it out screaming, "Make it warmer!"

The parent puts their hand into the water and thinks, "It's already a little warmer than my child likes."

Then they realize that while "make it warmer" means "increase the temperature" to an adult, to a child it may mean "make it closer to the temperature I call warm". 
Stories are a great way to relay to developers what a customer is really looking for in a feature. Customers don't tell developers, "I need you to build credit card fields that capture the card number, expiration date, and verification code". Rather, they tell developers, "I want to pay online.”

What I've been showing you on these green cards in the upper left corner are stories that follow a common format for relaying information to developers. I've been using that format to relay each story I want to tell you about how a feature is born. "As a presenter I want to show my audience the Scrum methodology so that they'll understand how development decisions are made."

And remember, agile thinking, Scrum, and stories aren't just for software development — they're for product development. Administrators could use stories like, "As an end user in Accounting, I want to delay software updates so that I can complete end-of-month billing cycles on time to recognize revenues." The story is telling you the problem. It's not telling you how to solve the problem. That's for the developer.

Not all stories follow this format, but at the heart of agile development and Scrum, stories convey much more meaning than software requirements.

When stories are ready, they go into something called a backlog, which is nothing more than a pool of work — kind of like a task list. As stories get prioritized, they move up higher and higher in the backlog until they're up next for development. Some stories like the choice changes XML feature I mentioned earlier may stay in the backlog for a long time because they never get prioritized higher than new features coming in.



Lather. Rinse. Repeat.
The cycle of development

• Generally two weeks but not more than a month
• Purposely time-blocked

William Smith
Read Me

William Smith
ow, if the story is the heart of agile Scrum development, the sprint is the machine that makes it work.

A sprint is a period of time that commonly lasts about two weeks but not more than a month.

It's purposely time-blocked. It doesn't grow longer or shorter depending on how much work there is. Instead, it's a way of forecasting how much work can be accomplished in a period of time.



Planning Daily 
Standup

Daily 
Standup

Daily 
Standup

Daily 
Standup

Daily 
Standup

Daily 
Standup

Daily 
Standup

‘Error x01011: Packet overrun’

‘No Network Connectivity’

Review

Retrospective
Daily 

Standup

William Smith
Read Me

William Smith
Here's the basic structure of a sprint. Let's say it runs from Monday of week 1 to Friday of Week 2.

At the beginning of the sprint, the development team meets for Sprint Planning. This is where the developers themselves review the backlog and determine how much work they can complete during the next two weeks.

Each story has a definition of "Done" associated with it. And "done" means "working software that improve the product". That doesn't mean what you and I would consider full-featured software. Instead, it could mean "I can click a button and send a command to a computer to install software, and that I get feedback."

That feedback might look something like, "Error x01011: Packet overrun".

Every morning throughout the sprint, the team meets for a 15-minute daily standup with their Scrum master. Each developer says what they've completed, what they're gong to work on next, and what's blocking their progress. It's the Scrum master's responsibility to remove anything blocking their development.

On the last day, they might have two meetings. The first is the sprint review which is a ceremony where everyone in the organization is invited to attend to see what's been accomplished. Each developer demonstrates their working software and stakeholders have the opportunity to offer feedback. If what they see isn't what they wanted, the developer isn't blamed. Instead attendees have a discussion and a new story is added to the backlog for a future sprint.

And the last meeting of a sprint is called the retrospective. This is where the team meets to discuss anything that went wrong during the sprint and what can be improved. It's the Scrum master's responsibility to take improvements and implement them starting with the next sprint.

But what about that "Error x01011" feedback? That's not great. So, in a later sprint, another story might say something like, "As a network administrator, I want to better understand the feedback I receive when sending a command to a computer so that I can remediate errors."

Combined, these two stories take more than two weeks for a developer to finish. But separately, each can be done within a two-week sprint of its own. And now I can tell you the estimated amount of time to finish a feature is one month. And it will be finished in one month unless other stories receive higher priority during the next sprint.



Lather. Rinse. Repeat. 
The cycle of development

• Generally two weeks but not more than a month
• Purposely time-blocked
• Iterative releases

William Smith
Read Me

William Smith
Once a sprint is complete, the work goes into the production build of the product and gets released.

So, if you've ever wondered why a feature doesn't seem fully-baked sometimes, this is why. What you're seeing is a normal development process where a product is improving over short periods of time — iteratively.

That's a benefit of the design of Scrum because customers will naturally provide feedback on what they see in a release. Their comments are converted into stories. Those stories go into a backlog for work where they'll get picked up for development in a future sprint.

If development still happened the way it was done 20 years ago, customers would be waiting 2-3 years for new features before they could even use the software and give feedback.



Do not use permanent marker !!!

BACKLOG DOING REVIEW DONE

Lessons Learned 
■ Scrum is about teamwork 

■ Developers have probably never been end users of their products 

■ Scrum is empirical — relying on facts collected from customers 

■ Observe. Orient. Decide. Act. 

■ What customers say they want isn’t always what they think 

■ A story is the best method to relay what customers need 

■ Sprints are quick and iterative, which encourages faster feedback 

■ Iterative development means not having to wait years 
for new features or to give feedback

William Smith
Read Me

William Smith
So, contrary to what customers might think about software developers, there's definitely a solid thought process behind how they release new features and updates.

Here's a recap of what I discussed.

Twenty years ago customers would see improvement in their software products arrive every few years. Today, agile development and Scrum turn that into every few weeks. The tendency is to tighten that feedback cycle even further like Microsoft is doing with Outlook for Mac. It went to weekly releases back in March of this year. 

I've spoken about the process, but not yet about the people. As administrators whose product is to support your end users, I encourage you to picture yourself in any one of the roles I'm about to cover.

Let's talk about the Scrum team. Just like Scrum has a defined structure, so does the team that uses it.



Domain expert 
Story teller

• Keeper of the backlog
• Represents the customer
• Not the same as a Product Manager
• PMs are responsible for long-term vision
• POs are responsible for short-term execution
• Not a committee but one person

William Smith
Read Me

William Smith
The Scrum team has three different types of members. Let's start with the product owner.

They're not necessarily a technical person. Instead, they're more of a "domain expert". What I mean by that is they're the most knowledgeable about the product or their part of the product. They should have a deep understanding of who the customer is, how and why the customer uses the product, and how the work their team produces adds value to the product.

The product owner is the keeper of the backlog and the owner of the stories it contains. They represent the stakeholders, which include customers. So, the product owner represents you!

You'll hear another title called Product Manager, but that's a different person who works with the Product Owner. The Product Manager is responsible for the overall vision and strategy of the product. The Product Owner translates the Product Manager's strategy into actionable tasks. Product Managers navigate. Product owners steer the ship. And note there's no Product Manager sticky note up here. They're not part of the Scrum team.

As the customer, the Product Owner is the person you're trying to influence when you submit feedback or feature requests.

And what I think is also valuable to understand is that the Product Owner is a single person never a committee. This distinction is what keeps a product moving. Otherwise, new features could get quagmired in politics and meetings, which often has the effect of diluting their potential value.



Scrum team sensei 
Herder of cats

• Servant leader
• Guides the team through the Scrum process  
• What did you do yesterday?
• What will you do today?
• Are there any impediments in your way?  
• Removes anything blocking a developer’s progress

William Smith
Read Me

William Smith
A Scrum Master is responsible for the Scrum team. They provide  guidance for both the product owner and the developers, and they are very much the definition of a servant leader rather than a leader. They may also be a developer on a team or the Scrum master for multiple teams.

Their role is to guide the team through the Scrum process. They run the daily stand-ups where they're the one to ask those three questions of each developer:

What did you do yesterday?
What will you do today?
Are there any impediments in your way?

If the developer says they have something blocking their progress, it's the Scrum master who'll take care it. For example, a developer may say they can't find the legal guidelines for implementing credit card transactions. The scrum master will focus on doing that for the developer while they continue working on something else.

By the way, these daily stand-ups aren't optional. The Scrum master and the developers must attend. The Product Owner isn't required to attend the daily stand-ups, but as a member of the Scrum team, they should.



Coders and testers 
10-foot tall Oompa Loompas

• Self-managing
• Cross-functional with a diverse set of skills

William Smith
Read Me

William Smith
The rest of the team is made of individual developers. No more than 5-7 developers. Any more than that and productivity actually goes down.

As a team they're self-managing. No one assigns them work. Instead, during the sprint planning meeting, they'll review the backlog and decide among themselves who'll take which tasks next. Ideally, each member is cross-functional with a diverse set of skills. They'll work together autonomously.

This goes back to why it's called Scrum because it's the very embodiment of teamwork.

While deciding the amount of work they take on for a sprint, they may use a method like this.

Let's say a team my have five developers — some are more experienced than others.

They might decide team members with the most experience can accomplish five units of work in a two week sprint. And the less experienced developers can accomplish three units of work.

A unit of work is just an arbitrary measurement they glean from working with each other for a while. There's really no math behind it.



2 
senior


developers

3 
junior


developers

= 10 
units


of work

5 
units


of work

x

3 
units


of work

x = 9 
units


of work

19 
units


of work

0 + 1 = 1

1 + 1 = 2

2 + 1 = 3

3 + 2 = 5

5 + 3 = 8

8 + 5 = 13

13 + 8 = 21

Fibonacci sequence

William Smith
Read Me

William Smith
So, if two senior developers can complete five units of work each within a sprint, that's 10 units. And if three junior developers can do three units of work each within a sprint, that's 9 units. That's a total of 19 units of work the team estimates they can complete within two weeks. Again, the team decides what a unit is.

During the planning meeting at the beginning of the sprint, they'll review the backlog and the highest priority stories. If the product owner has done a good job writing the story, the developers will decide among themselves, "This story looks like two units of work or that story look like eight units of work."

To keep decisions easy, they'll assign points to stories based on Fibonacci numbers. You might remember this from high school math class. You add 0 and 1, which equals 1. You take the new number and add it to the previous number, which gives you two.  2+1=3, 3+2=5, 5+3=8, and so on. The numbers grow exponentially as the sequence increases. This avoids having to make decisions about whether a story is worth five points or 6 points. Using the Fibonacci numbers, there's a clear difference between 5 and 8 or 8 and 13.

Once the team hits 19 units of work or close to it, they stop. Everything else is left in the backlog for another sprint.

What do you think would happen if they ever came across a story that's a 21 or higher?

They'd have to ask the Product Owner to break it down into smaller stories.



Coders and testers 
Herder of cats

• Self-managing
• Cross-functional with a diverse set of skills 
• Avoid context switching
• Changing working data in our brains takes time
• 100% - 20% / 2 = 40%

William Smith
Read Me

William Smith
During the sprint, each developer is heads down on their own stories.

And we could all take a lesson from the way they work.

Scrum is designed to avoid context switching, which is a fancy way of saying "multi-tasking". Developers don't work on multiple teams and they don't work on multiple projects. And the Scrum master ensures outside influences don't distract them.

People who try to multi-task lose about 20% of their time to context switching because they have to change their thought processes. They have to write their current data to the long term storage in their brains and retrieve data to put into short term storage for working. Humans don't do that quickly. It takes us time to go deep into our work and focus.

While you might think that means they're still 80% productive, the math will show you're wrong. Yes, they're 80% productive across all their projects, but they're only 40% productive per project instead of 100%. Don't forget: each project is taking time away from the others.



Context Switching

100 

80 

60 

40 

20 

0
1	 	 	 	 2	 	 	 	 3	 	 	 	 4	 	 	 	 5

The Professional Product Owner, Don McGreal and Ralph Jocham, page 76

Number of Simultaneous Projects

Pe
rc

en
t

Working time available per project

Lost to context switching

William Smith
Read Me

William Smith
Here's what that looks like.

On the left is how much of my time I can focus on a project. At the bottom are the number of projects I'm working.

If I'm only working on one project, I can spend 100% of my working time on that project. That's as fast as I can go.

But if I now have two projects, I lose 20% of my working time to context switching, which leaves me with 80%, right? But that 80% is divided between two projects, so now each project only gets 40% of my time.

If I try to work on a third project, each only only gets 20% of my time.

And I keep losing working time per project as I go. With five projects, I'm down to just 5% of my working time per project.

At that rate, it would take me 20 times longer to finish any project. And remember, I don't see any value returned from working on a project until it's done, and I release it to customers.



Coders and testers 
Heads down

• Self-managing
• Cross-functional with a diverse set of skills 
• Avoid context switching
• Changing working data in our brains takes time
• 100% - 20% / 2 = 40%
• Context switching delays release and delays ROI 
• 2 developers x 1 project = Half the time?
• The Mythical Man-Month — Brooks’s Law

William Smith
Read Me

William Smith
So, context switching not only decreases my working time per project, but it delays every project.

That means I don't see a return on my investment for a long time. And during that time, a competitor might release the same feature and beat me to market. Or worse, I might be out of compliance with government regulations, or maybe the need for the feature is completely eliminated because it was surpassed by something else. I've just wasted my time.

You might be thinking, "Why not just add more developers?" Shouldn't two people be able to accomplish the same thing in half the time? Or five people accomplish something five times faster?

In his book The Mythical Man-month, Fred Brooks coined Brooks's Law. It states adding manpower to a software project that's behind in schedule is an over-simplified solution to the problem and could actually further delay the project because now they have to coordinate with each other or they're getting in each others' way.

Or sometimes, you simply can't add more people. The common example here is that nine women cannot make a baby in one month.



Do not use permanent marker !!!

BACKLOG DOING REVIEW DONE

Lessons Learned 
■ Product Owners are responsible for short-term execution 

■ Customers requesting new features want to influence POs 

■ Scrum masters are the servant leaders of developers 

■ “What did you do yesterday?” 

■ “What will you do today?” 

■ “Are there any impediments in your way?” 

■ Developers are self-managing and choose work for each sprint 

■ Context switching is detrimental to software development 

■ Brooks’s Law: Nine women cannot make a baby in one month

William Smith
Read Me

William Smith
Software developers are often very expensive, so it makes sense for an organization to do everything it can to keep them productive.

Here's a recap of what I discussed.

Members of a Scrum team are all equals. The Product Owner and Scrum master are specialized roles, but neither of them assigns work. Instead, the developers themselves review the product backlog and choose what they'll work on based on their capacity. During the sprint, they'll remain heads down and focused on one thing until it's done. 

So, how does the customer get in on the action? I mentioned the person you want to influence is the Product Owner. What can you do to get their attention?

Let's discuss some ways to exert your influence. Software developers want your feedback.



Time, money, quality 
Pick any two

• Changing any two variables constrains the third

William Smith
Read Me

William Smith
To customers, it really looks like feature requests and product feedback goes into a black box. Hopefully, it's going to the product backlog instead.

By now, I hope you realize software development imposes some constraints like working on only a few things at a time and limiting that time to usually two weeks.

In addition to the constraints of Scrum, manufacturing a product always has three constraints — time, money, and quality. You can adjust any two of these variables, but the third will be constrained by the first two.



Time
QualityM

on
ey

William Smith
Read Me

William Smith
Usually, you see this illustrated as a triangle.



Time
QualityM

on
ey

William Smith
Read Me

William Smith
Inside the triangle is a fixed area, and it contains a finite amount of effort that manufacturers can put into their products without losing money.



Time

Q
ualityM
on

ey

William Smith
Read Me

William Smith
As we change any two sides of the triangle, the third side grows longer or shorter to keep the same amount of area or the same amount of effort.



Time

QualityMoney

William Smith
Read Me

William Smith
This is what I mean when I say the third side is always constrained by changes of the first two sides.

It's like the law of conservation of energy that says, "Matter can neither be created nor destroyed." Or in this case, if time to manufacture is the most crucial variable, then you'll either need to spend more money or reduce quality. You've got to make up that time from somewhere else.



Time, money, quality 
Pick any two

• Changing any two variables constrains the third
• Cold hard facts 

• “Do more with less” still requires sacrifice
• Software developers are empirical

William Smith
Read Me

William Smith
Constraints are cold hard facts.

There's a mantra in business management that goes, "We'll just need to do more with less."

In the short term, that means making sacrifices. In the long run, it's unsustainable and just wishful thinking on the part of management.

Remember, software developers are empirical and deal with facts. As customers, we shouldn't make demands without considering there will be constraints. Consider carefully which of these three variables you're willing to sacrifice.



They are among us 
Hello, neighbor!

• Communities and support forums
• Public and private betas
• Betas are not the time to ask for new features
• Feature requests

William Smith
Read Me

William Smith
I mentioned before that discussion boards are one place where software developers collect data. It would be unusual for any software developer today not to embed themselves in their own communities and support forums and either lurk or participate.

I'm not a product owner, but I definitely participate in our own Jamf Nation discussions as well as MacAdmins Slack and Mastodon. Just like you, I'm trying to keep a pulse on current events. If I see feedback from customers that I think's worth our development teams to know, I'll pass it along.

But communities aren't the only feedback channels. Beta programs exist to explicitly elicit feedback from customers. But keep in mind that betas are not the time to ask for new features. The purpose of a beta is to test whether new features in the beta test work as expected. And there will be times when how you think a feature should work isn't how the developer thought it should work. That's the feedback product owners want to get from you.

If you want a new feature, that's what feature requests are for. And keep in mind the product owner has to convert that to a story, add it to the backlog, and prioritize it for an upcoming sprint. All that takes weeks or months or sometimes years, depending on customer demand.

Communities, betas, and feature requests  — they're all open forums for your feedback. Use them!



Stay up-to-date 
N-2

• Operating system versions affect installed software 
versions

• Less incentive to release new software
• Some features rely on the latest operating system
• Software maintenance redirects resources away 

from developing new features
• Microsoft Office N-2 policy

William Smith
Read Me

William Smith
Something you may not think of as a contributing factor to software development, but makes a big impact is keeping your fleet of devices up-to-date.

The operating system affects whether you can install the latest versions of software with all the new features. If you're failing to keep macOS or iOS updated, then you're likely not updating your software either. And in aggregate, software developers see that.

Two things happen if you don't stay current.

First, the developer has less incentive to release new software if they see customers are lagging behind. And sometimes, new features rely explicitly on the latest available operating systems.

And the other is the longer a software developer has to maintain support for older hardware and software, the fewer resources they have to implement new features. Again, newer operating systems can mean significant changes are needed just to keep software working. We're seeing this with the transition from Intel to Apple Silicon today. Developers have had to decide whether to create universal binaries or stick with Rosetta and create separate binaries. Two binaries means twice the testing they need to do. And twice the support too.

Microsoft and other developers adopted an N-2 policy a while back where they explicitly told customers they'll support Microsoft Office on the current version of macOS and the two prior versions. And they put blockers in their installers to prevent installation on older OSes. Their N-2 policy also means their support teams have fewer troubleshooting scenarios.

Anything you can do to keep your fleet up-to-date has an impact on what software developers can deliver and when.



Shoulder surfing 
Automatic feedback

• “Help us improve our products by sharing data  
with us”

• Office for Mac phones home with every launch
• Sounds suspicious?
• Product features and buttons
• Online access often means automatic opt-in
• Telemetry is objective
• Understand just what 

data is shared

William Smith
Read Me

William Smith
Finally, let's talk about Telemetry. This is how developers automatically collect information.

Quite often you'll see this referred to as "Help us improve our products by sharing data with us" or "Send anonymous data".

Did you know every time you launch a Microsoft Office for Mac product, it's phoning back to Microsoft letting them know a specific version of their product just started up? It's not sending any personally identifiable information such as your name or company, but it is letting them know in aggregate what their install base is and how quickly customers are updating.

If you're ever suspicious about this, you have a right to be concerned, but generally the intention is sound and just. The software developer builds in telemetry to report back how their customers are using their products. Those reports usually include the product features you're accessing and the buttons you're clicking. If you ever enable any of Office's features like translation, which requires online access, you're automatically opting in to telemetry.

What's valuable to software developers is that telemetry is objective. It's not subjective like user polls or focus groups.

I mentioned earlier, you have a right to be suspicious. You should read and understand what data is collected and personally identifiable. Apple is doing a good job trying to make the process a little more transparent to customers.



Threads Mastodon

William Smith
Read Me

William Smith
Is anyone familiar with Mastodon and Meta's new Threads app for the fediverse?

Mastodon is an alternative Twitter platform built on open source software. Because it's a community project, the developers have decided not to collect any data whatsoever through their app.

Threads is Meta's app and can interact with Mastodon clients in the fediverse.

Thanks to Apple's privacy requirements, what they collect is disclosed before customers download the software, and we can see what developers have disclosed about their privacy practices.



Shoulder surfing 
Automatic feedback

• “Help us improve our products by sharing data  
with us”


• Office for Mac phones home with every launch

• Sounds suspicious?

• Product features and buttons

• Online access often means automatic opt-in

• Telemetry is objective

• Understand just what 

data is shared

William Smith
Read Me

William Smith
Telemetry is immensely useful to developers and I highly encourage you to enable it or leave it enabled, but only after you've reviewed their policy about collecting personally identifiable or sensitive information.



Do not use permanent marker !!!

BACKLOG DOING REVIEW DONE

Lessons Learned 
■ Time, money, quality — Pick any two 

■ There is no such thing as "doing more with less" 

■ Participate in feedback channels — forums and communities 

■ Betas aren’t the time to ask for new features 

■ Keep up with updates to avoid supporting multiple OSes 

■ Allow telemetry to collect anonymized data for developers 

■ Review your software developer’s privacy policies 
about data they collect

William Smith
Read Me

William Smith
These are just a few ways to influence the development process. The more active you are in participating in feedback, the greater the likelihood you'll be heard.

Here's a recap of what I discussed.

Software developers aren't magic. Coding takes time and resources and it's bound by the same constraints as any other product development or manufacturing process. What they need most is feedback from customers to tell them how to proceed with their work. And they have lots of ways to get feedback whether it's through focus groups, communities, beta programs, or methods they've baked into the products themselves to collect data. Customers using a product gives developers the most feedback because they can automate that. Just be sure you understand what information they'll collect about you.



Do not use permanent marker !!!

BACKLOG DOING REVIEW DONE

William Smith
Read Me

William Smith
That moves everything to done.

There is one last step that I didn't include on the Scrum board. Can anyone guess what that is?

The developer needs to release the product, which is arguably the most important step because as I mentioned earlier, they don't recognize any value from the work they've put into it until it actually gets in the customers' hands.



Do not use permanent marker !!!

How�a�Feature�is�Born
“Why�don’t�they�

add�my�feature?�

It�should�be�easy!”

“This�software�is�only�half-baked!”

“I�don’t�know�why�
I’m�paying�to�beta�test�
their�software!”

William Smith
Read Me

William Smith
I hope I've been able to answer these questions and others you might've had.

At this point, is there anything I haven't covered that you'd like to discuss?



Do not use permanent marker !!!

How�a�Feature�is�Born

William Smith
Read Me

William Smith
Thanks so much for coming to see me! 

Feel free to reach out anywhere here if you'd like to chat.


