
Managing iPads from the 
Command Line 

& Scripting it too…

Jesse C. Smillie 
Gateway School District



This Presentation and any Scripts mentioned will be available on GitHub:

bit.ly/JesseSmiPSUMacPrez



Before I start lets get an idea of  what you all have going on.



Me
My Love for Computers 

 starts here

Got Encouraged Here

What was a Hobby 
 turns into work in 99’

And GSD introduced  
me to Apple on work day 1



Jesse C. Smillie

• With GSD since 1999 
• ACMT since 2005 
• Solo Apple Tech until Sept 2021 
• Presenter at PSU MacAdmins 2019 
• “Ask Apple: Mosyle Spotlight” Presenter April 2021 
• Co-Presenter for March 22’ Apple IT Roundtable @ GSD 
• Co-Presenter for April 22’ Apple Virtual Tech Event 

“Onboarding iPads to MDM Using Apple Configurator”   
• Co-Presenter at PSU MacAdmins 2022 (The Campfire years)

Mac & Linux Operations Engineer

Drinker of  the Apple Kool Aide and 
future Mosyle Cult member



About Gateway
Located in Monroeville, Pennsylvania 
(just outside Pittsburgh) 

3,200 across 4 elementary schools, 1 
middle school, and 1 high school 

600 Staff  (over half  issued Laptops) 

MacBook Air (2020) for all teachers:  
Mac OS (100%)  

iPad 8th gen or better for Teachers who 
want them



Technology Deployed at a Glance
4 Technicians and 1 Director 

Middle School Student Led Help Desk 

High School Student Led Help Desk 

Elementary (K-4) 1500 iPads 1:1 

Moss Side Middle (5-8) 1200 iPads 1:1 

Gateway High School: About 1,200 1:1 Chromebooks and a cart of  Shared Mode iPads (30) 

District Wide Staff  250 iPads in hand 

All Apple hardware enrolled in Mosyle OneK12 April 2020 to current.



iPad Growth in the District

0

1000

2000

3000

4000

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023



Things to Understand 

We are a Mosyle Shop.  Everything I show you works with Mosyle 
OneK12 for sure.  Most of  this is universal though and will note as 
we go along. 

What isn’t universal can easily be adapted to work with your MDM, 
ticket system, inventory, etc you just have to figure out what their 
API calls are.



In GSD All 1:1 Roads start with Limbo
After Hello screens iPad goes right to Limbo. 

Apps deemed as must have for all are tied to 
Limbo.  This way those apps are there from 
the beginning. 

Limbo iPads are only “Allowed” Manager 
and Settings.  This forces setup.  Login to 
Manager and iPad is now usable.  Apps for all 
appear.  Additional apps by grade install. 

Custom Wallpaper tells you to login.

Who am I?

Why am I here?

Where is here?

Where’s Steve?



Why do it this way?
Speeds up iPad deployment (from my hands to their hands) 

Limbo iPads are inventoried, on charge, and automatically updated.  
Always ready to be handed out.  In charging/storage carts until then. 

Avoids big wifi draw during hand outs.  Post login by student/staff  they 
are ready to use.  Apps are there. 

Bad certificates, bad time on iPad, MDM server “hiccups” play less of  a 
role as they don’t happen when the student/staff  is standing here waiting 
to pickup.



iPad Storage Carts



CFGUTIL
Think Apple Configurator2 but from the Command Line



CFGUTIL

Installable from Apple Configurator 2 (Automation Tools) 

/usr/local/bin/cfgutil 

Can work on devices which have TRUST between the Mac and 
iPad 

Scriptable  /usr/local/bin/cfgutil exec -a <YourScriptHere>

https://support.apple.com/guide/apple-configurator-2/use-the-command-line-tool-cad856a8ea58/mac



My Sweet Terminal

Type: iPhone13,2   ECID: 0x11XXXXXA81001E	UDID: 00008101-00114849XXXXXXXE  
Location: 0x1100000   Name: DaDarkCarnival

cfgutil list

cfgutil --ecid 0x11XXXXXA81001E get buildVersion

20F75

My Personal Cell Phone

iOS 16.5 Build Version 

NOTE: Pairing and/or trust ARE NOT required to 

get this info

cfgutil --ecid 0x11XXXXXA81001E get firmwareVersion
16.5



So what can we do with this?



My Sweet Terminal Some random iPad in My Office

NOTE: Pairing & trust are required here unless in DFU mode

cfgutil --ecid MyECID install-profile /Users/Shared/MyWifiProfile.mobileconfig

cfgutil --ecid MyECID restore

cfgutil --ecid MyECID prepare --dep --skip-language --skip-region

MYECID represents 

the ECID of the iPad

Restores latest compatible iPadOS

Installs a wifi profile with SSID, Username, & Password.   
Should be a dedicated setup network.  I use “Apple Store”

Tell the iPad to do DEP process, skip-language & Region. 
Other “Hello” prompts will be skipped too per your enrollment 

config in your MDM



Why not Tether?  
If  your only doing a few iPads USB tethering is probably fine and 
you can skip the Wifi profile business… 

But what I’m going to show you in a few slides here was designed to 
do masses of  iPads.  USB connection to start the process and wifi to 
finish App downloads. 



Biggest Pitfall of  Configurator/CFGUTIL

If  iPad and your configurator Mac have trust for same Supervision 
Identity you can easily do all sorts of  things to an iPad like erase, 
update, etc. 

Without Supervision Identity you can’t pair and can’t do anything to 
the iPad (restore, update, etc.) 

Apple Configurator MUST BE OPEN for CFGUTIL to access 
KeyChain stores!!!!!

Is Supervision Identity Trust



Ways around Trust Issues…
Leverage MDM by using the ERASE command.

Boot iPad to DFU mode.  DFU mode 
doesn’t care about Trust.

If  iPad has checked in to MDM today 
and its on wifi now easy way to go!

Tedious on the thumbs but 
maybe your last option.



NOTE: cfgutil man page says about exec:
Run a custom command each time a device attaches or detaches. 

             There is no filtering on device attach or detach events; for 
             example, restoring a device will cause it to detach and attach 
             several times in a row. Complex "on attach" scripts should be 
             written to exit if a previous attach script is still running for 
             the device. 

             Script execution is not serialized. A detach script may start as 
             an attach is still running and vice versa. 

             The --ecid and --foreach global options aren't respected by this 
             command. 

             When the attach/detach scripts are running, these environment 
             variables are set: 
                   ECID          Target device's ECID. 
                   PATH          The path is changed to include cfgutil. 
                   UDID          Target device's UDID, if available. 
                   deviceName    Target device's name, if available.  
                                 (“iPhone 1") 
                   deviceType    Target device's type, if available. 
                                 ("iPhone7,2") 
                   buildVersion  Installed iOS build number, if available. 
                                 ("12B466") 
                   firmwareVersion  Installed iOS version, if available. 
                                 ("8.1.3") 
                   locationID    Location ID of the device's USB port. 
                                 ("0x00000001") 



/usr/local/bin/cfgutil exec -a <my script>
Executing this command will run your script every time an iPad is connected.   

Variables given to the script executed:

• ECID 
• UDID 
• PATH 
• deviceName 
• DeviceType 
• buildVersion 
• firmwareVersion 
• locationID

Really Helpful 
Stuff



/usr/local/bin/cfgutil exec -a <my script>
# !/bin/zsh 
# 
# Quick Example of  CFGUTil script.  This would be launched from  
# the command line as so-> /usr/local/bin/cfgutil exec -a /Users/Shared/blah/<thisscript>.sh 
# 
# NOTE THIS SCRIPT WILL KEEP RUNNING OVER AND OVER AGAIN UNTIL YOU PRESS CONTROL X..  This is because 
# the starter line you used is effectively telling cfgutil to go into loop mode and execute the script 
# everytime an iPad is connected. 

echo "The iPad connected has:" 
echo "-------------------------" 
echo "Type of  iPad-> $deviceType" 
echo "ECID-> $ECID" 
echo "UDUD-> $UDID" 
echo "Location-> $locationID   <--This is the location of  the device according to the USB tree." 
echo "Name-> $deviceName   <--Name of  the device currently." 
echo "Build Version of  iPadOS-> $buildVersion" 
echo "Firmware Version of  iPad-> $firmwareVersion" 

echo "All of  the info in the variables is given weather you have trust or not..." 

exit 0 

In the GitHub—> cfgutil_exec_Simple_output_Example.sh



Jesse Smillie
This Video can be found linked in the GitHub Repo



/usr/local/bin/cfgutil exec -a <my script>

In the GitHub—> cfgutil_exec_BasicWipe2Setup_Example.sh

#!/bin/zsh 
TEMPORARYWIFIPROFILE="/Users/Shared/ShakeNBake/Profiles/AppleStoreWifi7Days.mobileconfig" 

#Restore device which is connected. 
####NOTE THIS WILL ONLY WORK ON A DEVICE YOUR MACHINE HAS TRUST WITH 
bash -c "/usr/local/bin/cfgutil --ecid "$ECID" restore"  2>/dev/null  

#Install Wifi Profile  
####NOTE THIS WILL ALSO ACTIVATE THE DEVICE  
bash -c "/usr/local/bin/cfgutil --ecid "$ECID" install-profile $TEMPORARYWIFIPROFILE" 2>/dev/null 

#Call up Apple and get the relay to your MDM.  MDM takes over. 
bash -c "/usr/local/bin/cfgutil --ecid "$ECID" prepare --dep --skip-language --skip-region"  2>/dev/null 

#just making sure we have a clean break at the end of  this script. 
exit 0

Simple “clean out & Setup”



Running at 8x Speed

Jesse Smillie
This Video can be found linked in the GitHub Repo



What else do we need?



If  the iPad is already 
wiped we can get 

right to it

If  we have trust and 
booted we can just 

erase too!



Running at 4x Speed

Jesse Smillie
This Video can be found linked in the GitHub Repo



A warning about running CFGUTIL in a Loop
Some chargers/Sync stations disconnect the iPad from USB 
connectivity momentarily to switch from charge mode to no charge 
mode.  When this happens, if  you are running CFGUTIL exec, it 
will detect that drop/connect as a new connection and wipe it again. 

Think infinity loop of  iPad wiping…



Known to work:

Lock N’ Charge U16SCB 

Lock N’ Charge ELE7060 

Cambrionix Thundersync 3-16 & 
Supersync 15 

OWC ThunderBolt 3 Dock 

Coolgear USB3-16U1 (Intel Only) 

Intel Macs with lots of  USB A ports

Known not to Work

Griffin Storage Docks (Black & 
Silver) 

USBC to multi USBA port 
adapters..  Very finicky.

As a former Apple SE on our account used to tell me all the time “Mileage May Vary”



Multi Transactional Translators (TT) per Hub
A transaction translator is an 
important component of a high-speed 
hub device which, in essence, provides 
a communication link between the 
upstream-facing port of the hub and a 
downstream-facing port when they are 
operating at different data transfer 
rates. This is the case when the hub 
is connected to a high-speed host with 
full-speed or low-speed device(s) 
plugged into the ports facing 
downstream.

Why Intel only Hubs?



What about Automator?

MacOS Catalina and down?  Yup.  You can do that.

*As of  October 2021

https://support.apple.com/guide/apple-configurator-2/automator-actions-cade0f4df56f/mac

Big Sur and up?  Nope.  You can’t install a wifi 
profile so you can’t finish the device.  Always failed. 

https://configautomation.com



Am I reinventing the Wheel?

I mean I could wipe devices through Over the Air MDM Commands.

I could allow the Erase function locally to the end user.

There’s plenty of  ways to approach this problem…. So why this one?



iPad Growth in the District

0

1000

2000

3000

4000

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

1 Tech
1/2 Tech

Jennifer 
 Czyzewski



Help Desk Year 1 Group



iPad issues/tickets/etc for instance:
We handle all iPad recovery from outside.  Mostly in cases where 
student withdrew but didn’t return their hardware…. (Lost mode 
enabled, Inventory status change, etc.) 

New iPad assignments. 

Returned devices long thought lost to time. 

“My iPad does some weird thing” send ups from the Elementarys.



All these cases have something in common:

Device in my hand.



A script could…..

Check the device (with trust.)  Issue a Restore or Erase command 
depending on the state of  the device. 

No Trust?  Cool.. um do it some other way… 

Remove lost mode and clear back log commands too. 

Change device statuses and assignments in inventory.

What could such a 
script do for you?



So what now?



Introducing……

Shake N’ Bake
For iPads

Fancy bag NOT included



This is where we get not universal…

GSD is a Mosyle shop since April 20’.  The extra functions I bolted on top 
use API calls to Mosyle utilizing functions and actions they have already 

provided.  If  your not a Mosyle customer this part will take some 
investigating on your part.

This is not as hard as it sounds and honestly a little Google 
searching and your bound to find some decent examples you 

can bend to your will.



ShakeNBake.sh

Combine MOSBasic Libraries with CFGUTIL to automate iPad cycle 

Automated Wipe, Update, Provision, and then let DEP bat clean up. 

Work around Trust issues by leveraging MDM wipe ability. 

Clear back logged commands in MDM before setting up device. 

Disable Lost mode on the iPad we are working on.



MOSBasic

Erase 

Assign 

Unassign 

Lost mode activities

https://github.com/JCSmillie/MOSBasic

Home grown command line utility to manage iPads in Mosyle doing the most 
common jobs:

CSV export of  all 
AppleTVs, iPads, 
and Macs



ShakeNBake.sh

Combine MOSBasic Libraries with CFGUTIL to automate iPad cycle 

Automated Wipe, Update, Provision, and then let DEP bat clean up. 

Work around Trust issues by leveraging MDM wipe ability. 

Clear back logged commands in MDM before setting up device. 

Disable Lost mode on the iPad we are working on.



This is in the presentation 
repo..  Reference Shake N Bake 

Logic 



Live Demo Warning….



Jesse Smillie
This video of my agony is not in the repo…. I’d like to forget it happened!



Live Demo Warning….





What about you Other MDM people?

ShakeNBake.sh utilizes functions from MOSBasic as well as cache’d 
data. 

If  you can get this data out of  your existing MDM or Ticket system 
you could easily adapt.  Code is commented where necessary.

Feel free to branch my Repo and adapt to your needs.
https://github.com/JCSmillie/MOSBasic

NOTE Watch for this repo to update after the  
presentation for a newer version of  MOSBasic




