
The Journey from
No Code, to
Low-Code, to
Code
Dmitri Altum - Systems Engineer

Who am I?
● First and foremost: A dog dad

● Spent time at Meijer, IBM, Fleetsmith

● Currently a systems engineer at Ramp

An Evolution

Learning code started as a desire, and turned into

a need to evolve

Traditional Resources Weren’t Helping

Textbooks, school courses, and online courses

weren’t helpful

Doing My Part in Giving Back

Hopefully at least one person walks away with

some new ideas on how to grow

Overview
What is this

journey all

about?

1 2
Beginning my

career

Writing code

became a

pipe dream

High School

Learning

about writing

code as an

option

MacAdmins

The need to

evolve

materializes

Second

Story

Foundational Skills

are developed

through the use of

Low-Code tools

Success?

I begin to write

code again

3 4 5

Where did the journey
begin?

● High school VB & C++ classes sparked my

interest in building things

● I had to give up on that idea and chase down

something I felt was more realistic

The Start of No-Code

The No-Code, No-Learn
problem

• The environment I “grew up” in for IT

didn’t value automation

• Click-ops was common and accepted. It

was “safe”

• If things took a while to accomplish?

Job security

• As I grew in roles, I needed to learn

• I started to write bash scripts, but I had

too many questions

• I went searching for answers, and found

MacAdmins

MacAdmins
makes a case
Incredible Projects

● Munki - Greg Neagle

● MDS - Tim Perfitt

● So many others

Incredible Scale

● AirBnB - Graham Gilbert

● SAP - Rich Trouton

● & more!

Mojave

20%

Catalina

20%

Big Sur

20%

Ventura

20%

Sonoma

20%

macOS Versions

Most importantly: I was gifted the
realization that I needed to grow &
evolve

The role of IT
● We helped people learn

to use technology

● Traditionally seen as a
cost center

● With the increased significance of
technology, our impact can be felt
more than ever

● We are becoming a
force multiplier

● Teams were leaner

● Timelines were shorter

● Personal stakes were higher

Joining the startup world

● I couldn’t keep up

Why couldn’t I keep up?

Repetitive Requests Grew …and became more frequent All I could do was keep us afloat

Tasks like onboarding and offboarding

became lengthier and more time

consuming as the company grew

With more people, these repetitive

tasks needing done more frequently.

High growth came at a cost

I couldn’t focus on helping become a

force multiplier, it was all I could do not

to sink.

The Start of Low-Code

Low-Code Provided an easy starting point

Even with limited resources, it was easy to get

things accomplished quickly with a low code tool.

Low-Code is the Ikea of the IT world

Like building Ikea furniture, generally decent

instructions, tools included, but you can still make

it easier with your own tools. Oh, and you’ll

certainly get frustrated.

But why
Low-Code?

● Faster Development Time

● Drag & Drop Interface

● Non-Technical Users

● Incredibly easy to spin up & shut down

Why - Expanded

So…where do I start?

• I was overwhelmed, it felt like I hadn’t had my

coffee yet

• I started to look at what others were doing

• I looked at the (barren) templates

• Ok sorry that was a lie, I don’t drink

coffee…but I imagine that’s what it felt like!

Let’s Go!

I’m going to solve world hunger

Or…maybe not. Maybe I should just start small

On-Boarding Misc. Tasks Reporting Off-Boarding

Account Creation Slack Messages MDM Reporting
Remove User from

Groups

Scheduled Account

Activation

Google Device

Monitoring
Device Trust Reporting Transfer Calendar

Email Alias Creation Privilege Alerting User Access Logs Set up Email Delegates

Group assignments Transfer Google Drive

Digital Learning Checklist

“We need to go to where our
users are, not make them come
to us"

- Me to myself probably

● Similar to SSO, everything can
be under “one roof”

● This led to a fun (somewhat)
malicious attack vector

Moving Forward

● As I handled the basic tasks
with relative ease, it freed me
up to look at more advanced
tasks

● I could look for ways to drive
the company forward, not just
IT.

API Endpoint

Receives

Payload

Users clicks

button

Slackbot takes

action

Getting More Advanced

API Endpoint

Receives

Payload

Getting More Advanced

Add a related idea

Add a related idea

Add a related idea

Add more sub-ideas

Add even more sub-ideas Add even more sub-ideas

Add more sub-ideas

Add more sub-ideas

Add even more sub-ideasAdd even more sub-ideas

So what did I start
to build?

A bit of a jumbled mess…

Off-Ramp
Off-boarding Slack Bot:

Initial design credit goes to @Pete Viri
on MacAdmins Slack (link in
resources)

Slack Interactivity

● Slack has an “interactivity”
entry point

● All requests go to one API
endpoint.

● Cannot distinguish between
“button types” or “interaction
types”

Off-Ramp - Modules

● Originally had a “All in one”
mindset.

● Realized quickly this made
troubleshooting and testing
very difficult

● Broke it down into Modules &
Sub-Modules.

Off-Ramp - Schedule

● Needed a way for IT & HR to
schedule off-boarding

● Didn’t want to just “trigger”
the app manually, as there
may be late night/after-hours
exits.

Off-Ramp - What Happens when a user clicks Schedule
1. A payload is sent to API endpoint, including some basic

information.
2. API endpoint reads the payload and determines what action to

take based on what button was clicked
3. A modal view is created using Compose/Construct Cards
4. The modal view is “published” to the user.

1. The user selects an employee, date, time, and gives a ticket link
and submits that info

2. The same API endpoint receives a payload with that new
information

3. Based on the button that was clicked, the API endpoint chooses
what to do

4. Information is added to a table (or “DB”)

Off-Ramp - What Does That API Endpoint Look Like?

Off-Ramp - Perform

● Reads the table at set
intervals

● Any rows that match
conditions trigger the
off-board.

● Many flows running
simultaneously

Off-Ramp - What it Looks Like

● Not only does it need to
perform many off-boarding
actions, it needs to notify for
those that it can’t do.

● Alerting is critical

Off-Ramp - Fun Intricacies

● Dynamic setting date selector

● “Get Off-board Channel ID”
flow

● Even prank my coworkers
○ When you watch this, try

clicking the emojis on
the most recent
off-board :)

Off-Ramp - Concerns

● Who gets access?
● How do I limit access?

Who Gets Access & How Do I Limit Access?

● Cross-functional
Conversation

● This was more difficult.
● Originally planned to only be

used in 1 channel
● Customize to the user

So what are some
lessons from
Off-Ramp?

Working with Jason…err json.

● Being brand new to json, I wasn’t
familiar with how it worked, how to write
it, or why I kept getting all those gosh
darn errors.

● Sought out tools to help and learned a
few things: Slack’s Block Kit Builder,
Json Linters, Json visualizers

● Learned about objects, lists, and more.

Expected Input

● Working with json gave me
familiarity with structured data

In

Out

● Expected input/output was
crucial

● Error handling

Stumbling into advanced

● Working with API endpoints,
not just json.

● Monolithic vs Microservices
even entered my brain

● (Spoilers: At small scale, less
about performance, more
about troubleshooting ability).

Skeleton Key

Ramp Access ‘Mediately Please - Skeleton Key

FileVault Recovery Tool

Shoutout to @Gabriel Sroka on
Slack for helping point me in the
right direction.

Skeleton Key - How It Works

● Webhook generated by ticket
type

● Sent to API endpoint

● Triggers Slack bot

Skeleton Key - How It Works

● Lookup User Info

● POST Call - Push Notification

● Verify Result

Skeleton Key - How It Works
● Find Devices

● Post FileVault Key with
instructions on how to use

● Most importantly: Self-Destruct

So what are some
lessons from
Skeleton Key?

API Usage

● Different types of
calls

● Utilizing API
Responses

Get

Post

Delete

Patch

Put

Looping

● Looped to verify result

● Looped through all devices
assigned to a user in Kandji

● Looped through table results

Looping..

● Looped to verify result

● Looped through all devices
assigned to a user in Kandji

● Looped through table results

Looping….

● Looped to verify result

● Looped through all devices
assigned to a user in Kandji

● Looped through table results

Help…I’m stuck in
a loop

Wiping Secure Information

● Too many tools don’t clean up after
themselves

● It’s not just about how you
retrieve/send data.

Lumiere - Director of
Animate Assets

Rapid Asset Movement Pipeline (R.A.M.P.) aka -
Lumiere (Director of Animate Assets)
● A fully automatic sync

between Kandji & Snipe-IT

 Lumiere (Director of Animate Assets)

Lumiere - Pagination

● The first time I experienced
pagination necessity

● Struggled to figure out how to
utilize API response

Lumiere - Looping
● Pagination involved

loops…again…we’re definitely
stuck in some sort of loop

Code-Aid Mixer

CODE NO-
CODE

Starting code…without starting code

● Custom Logic needed
● UI needed

Code Snippets

● Utilizing a new low-code tool
came with challenges

● Needed to write some code
● Lots of Stack Overflow &

even some ChatGPT

Converting Slack Channels

● A lot of “Make this
channel public” requests

● Takes Slack ID
● Looks up Channel

Member List
● If found, makes public, if

not, does nothing.

 My Magnum Opus

What about my favorite?

● Dmitri Motion Pictures
Presents

● The Bee Movie: An Okta
Workflow

● A whole lot of nothing.

But what did I learn?

The start of Code

Why Move to Code?

● Limitations in the IPaaS
Architecture

● Reliance on vendor updates

● Selfish Self-Preservation

Limitations in IPaaS

● RBAC was a big concern

● Data security

● Weird architecture quirks

● Version Control/Review

Reliance on Vendors

● Broken cards

● API Updates

● Test Cases

Selfish Self-Preservation

● You have to look out for yourself

● Career Transition Options

● Build your own brand

How did I start?

● Picking a language

● Setting a goal/task to
accomplish

● Utilizing community members

● Plus…look at that cute mascot

Picking Tools

● Find an IDE (integrated
development environment)
you enjoy

● Find useful extensions

But what do you even look for?

Healthy (Coding) Habits

● Comment on everything!
● Consistent Formatting
● Meaningful Naming of Variables
● DRY (Don’t Repeat Yourself)
● Modularization

Helpful Habits … Hints

● Find a logger you enjoy and use it alot.

● Find an environment configuration tool you enjoy.

Git

● Learn the “stages” of code

● Similar to “Suggestions” in
Google Docs

Stumbling Points

● Code won’t be perfect … or even good

● Be willing to abandon a project
Perfectly accurate
representation of Dmitri

What about our AI Overlords?

● Massive influx of code
● Can’t just take it for what

it is
● If it puts a door in the

wrong spot, would you
recognize?

So you’ve got an environment, what now?

● Just dive in!

● Pick a project you’ve done elsewhere

What did I notice from my first tool?

● Json Data - I was already familiar
● Modules = Functions
● Looping Logic
● If/Else Logic
● Error Handling
● Error Alerting

Imperfect Code

● I found things I didn’t understand, and followed the “template”
● It worked, so I went back to try and understand it.

Other Tools -

● Slack Channel Archiver
● Slack Channel Creator
● Slack Picture Downloader (Are we noticing a theme?)
● User Access Review

Where do I go from here?

● Continue to learn Go
● Start to branch out into new languages
● Potentially do some web-app dev?

Thank You

Jacob Waters - A dear friend who I have spent a lot of time

worrying to

John Peterson - A brilliant person who has taught me an

invaluable amount of code in the few months we’ve worked

together

My Colleagues - Anna, Colin, Simon. Y’all are awesome. Without

you being insanely good at your jobs, I wouldn’t have the room to

explore and grow

The MacAdmins Community!

You, yes you, for being here. I hope you took something from this.

Resources:

Slack Block Kit Builder

Cuebert

My Favorite Go Logger

My Blog with Slack Bot
Walkthroughs

Pete Viri's Blog Post

https://app.slack.com/block-kit-builder/
https://github.com/johnmikee/cuebert
https://github.com/sirupsen/logrus
https://www.naviguidance.com/blog
https://www.naviguidance.com/blog
https://paper.dropbox.com/doc/Using-Okta-Workflows-to-Automate-User-Deprovisioning-via-Slack-orNKxky5yAdc7f2dNu5Dr

