
PSUMAC208:
PACKAGING

RUSTY MYERS

• Penn State University,
Systems Administrator ;Classroom and Lab
Computing

OVERVIEW

• What Are Packages

• Why Use Packages

• How to Use Packages

• Demo Time

QUICK AUDIENCE SURVEY

• Created a Package?

• Iceberg?

PACKAGE INSTALLERS

• User Installer.app
/System/Library/
CoreServices/

• Installs Files &
Applications

• Run Scripts

WHAT PACKAGES DO

PACKAGE SETTINGS

• Product Information
Title, Description, Welcome, Read Me, License...

• Package Properties:
Package Identifier, Version...

• Installation Properties
System, Volume, & Authentication Requirements...

• Install Operations
Pre & Post flight, install, upgrade

From:
http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/SoftwareDistribution/Managed_Installs/Managed_Installs.html#//apple_ref/doc/uid/10000145i-CH6-SW9

Product information:
Title
Description
Welcome file
Read Me file
License file
Conclusion file

Package properties:
Package identifier
Package version number
Resource fork processing

Installation properties:
System requirements
Volume requirements
Authentication requirement
Allowance for choosing an installation volume other than the boot volume
Installation destination on the installation volume
Relocation consent (the ability user may have to change the installation destination)
Revert consent
Directory-permissions overwrite
Postinstallation process action

Install operations:
Preflight Preinstall/Preupgrade Postinstall/Postupgrade Postflight

PACKAGE INSTALLERS

WHAT ARE PACKAGES

• File Directory or Flat File

• Appears as single file in Finder

• Created with PackageMaker

• /Developer/Applications/Utilities

• Contain Product or Component (The Payload)

• Installed based on Package Configuration

http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/SoftwareDistribution/Managed_Installs/
Managed_Installs.html#//apple_ref/doc/uid/10000145i-CH6-SW9

Defined by Apple:
An installation package (also known as a package) is a file package (a directory that appears in the Finder as a single file) created using the
PackageMaker application (/Developer/Applications/Utilities). Packages contain a product or product component—the packageʼs payload—to
be installed on a computer, and install configuration information that determines where and how the product is installed.

• .pkg

• Component Package 10.2+

• Flat Package 10.5+

• .mpkg

• Metapackage 10.2+

• Distribution Packages 10.4+

PACKAGE FORMATS

 Specifies the minimum target operating system version. Defaults to 10.3. For 10.5, flat pack-ages packages
 ages and metapackages will be built; for 10.4, bundle packages and distributions will be
 built; and for 10.3, bundle packages and metapackages will be built.

Flat Package: XAR Archive
10.5+
Flat packages contain a single product component. They are usually included as part of a distribution package or metapackage but can also be installed individually in computers
running Mac
Component Packages:
10.2+
Component packages contain a single product component. They are usually included as part of a distribution package or metapackage but can also be installed individually in computers
running Mac

MetaPacage:
10.2+
Multiple Component packages with product information
Metapackages provide some of the features distribution packages provide but can be installed on computers running Mac OS X v10.2 and later.

Distro Package:
10.4+
Provides product information and installation information
Distribution packages let you define the complete install experience of your product. They also provide you with a great deal of flexibility for defining the install choices users use to customize an install. Distribution
packages offer you and the users of your product the best installation solution for Mac OS X–based products. Distribution packages, however, can be installed only on computers running Mac OS X v10.4 and later.

COMPONENT PACKAGE

• Single choice

• No Custom Choices

• Some parts editable in Finder

• Folder Bundle

• Right-Click -> Show Package Contents

COMPONENT PACKAGE

Contents

Archive.bom

Archive.pax.gz

Info.plist

PkgInfo

Resources

Description
PackageInfo
This is a XML document that contains information about the package behavior, requirements, and identity.
Bom
This is the Bill of Materials for the files contained in the Payload archive. See mkbom (8).
Payload
This is an archive of the hierarchy of files to be installed. The hierarchy is saved as cpio archive compressed with gzip. See cpio(1), ditto(1), gzip
(1).
Scripts
This is an archive of scripts and additional resources. The hierarchy is saved as cpio archive compressed with gzip. See cpio(1), ditto(1), gzip(1).
This file is optional.
RunAtStartup
This is a shell script that will be supposedly invoked on the next Mac OS X startup.

http://s.sudre.free.fr/Stuff/Ivanhoe/FLAT.html

COMPONENT PACKAGE

Contents

Resources

en.lproj

package_version

TokenDefinitions.plist

postflight

en.lproj: Language pack for product information

package_version:
major: 3
minor: 6

TokenDefinitions.plist:
Unique Identifier
Install Path
searchPlugin - Path to Search System for old versions of app

scripts are stored here as postflight & preflight (Also Preupgrade, PostUpgrade, PreInstall, Postinstall)

DISTRIBUTION PACKAGE

• Multiple Component
Packages

• Component Choices

• Define Single Install
Experience

Each choice is a component package

DISTRIBUTION PACKAGE

Contents

distribution.dist

Resources

Packages

Package.pkg
Package1.pkg

distribution script runs all package installs
Packages are component packages
Click
Resources have localizations

DISTRIBUTION PACKAGE

Contents

distribution.dist

Resources

Packages

en.lproj

Resources have localizations

FLAT PACKAGE

• Single File - XAR Archive

• Edit with Flat Package Editor

• Expand Flat Packages

• pkgutil --expand package.pkg /path/to/destination

shows as single file on other file systems and distribution systems

FLAT PACKAGE

PackageInfo

Bom

Payload

Scripts

PackageInfo - Unique Identifier, Package Settings
BOM - Permissions and Destination for Payload files
Payload - Files to install
Scripts - Scripts to run preinstall or postinstall

WHY USE PACKAGES

WHY USE PACKAGES

• Silent

• Free

• Easy Deployment

• Capture Licensing Info

• Set Computer Requirements

• Log of Install Files and Permissions (Bill of Materials)

Can be installed silently via command line/Apple Remote Desktop
Sexy!

DEPLOYING PACKAGES

• Disk Image Container

• Apple Remote Desktop

• Command Line

• sudo installer -pkg /path/to/pkg -target /

• 3rd Party Tools

HOW TO MAKE PACKAGES

HOW TO MAKE PACKAGES

• Manually Define Payload

• GUI

• Command Line

• File System Events

• Before & After Snapshots

PACKAGING TOOLS

• GUI

• PackageMaker

• Iceberg

• Composer

• Packages

• InstallEase

• Command Line

• PackageMaker

• luggage

• Packages

• Manual

PACKAGING TOOLS

• GUI

• PackageMaker

• Composer

• Packages

• FSEventer

• Command Line

• PackageMaker

• fslogger

• File System Events

PACKAGING TOOLS

• GUI

• Composer

• Packages

• InstallEase

• Command Line

• loggen/pkggen

• Snapshots

BASIC PACKAGING

• Manually choose Install files

• Manually set Installation Destination

• Can be complicated

• Experience

• When to Include & Exclude Files and Components

BASIC PACKAGING

• Set

• Organization

• Minimum Target

Organization is:
Bundle Identifier
This is a unique identifier string for the bundle. This identifier should be in the form of a Java-style package name, for example
com.mycompany.myapp. The bundle identifier can be used to locate the bundle at runtime. The preferences system also uses this string to
uniquely identify applications.
http://www.advancedinstaller.com/user-guide/mac-os-tab.html
The bundle identifier string identifies your application to the system. This string must be a uniform type identifier (UTI) that contains only
alphanumeric (A-Z,a-z,0-9), hyphen (-), and period (.) characters. The string should also be in reverse-DNS format. For example, if your
companyʼs domain is Ajax.com and you create an application named Hello, you could assign the string com.Ajax.Hello as your applicationʼs
bundle identifier.
The bundle identifier is used in validating the application signature.

MINIMUM TARGET

• Mac OS X 10.3

• component packages & metapakages

• Mac OS X 10.4

• component & distribution packages

• Mac OS X 10.5

• flat packages & metapackages

 Specifies the minimum target operating system version. Defaults to 10.3. For 10.5, flat pack-ages packages
 ages and metapackages will be built; for 10.4, bundle packages and distributions will be
 built; and for 10.3, bundle packages and metapackages will be built.

BASIC PACKAGING

• Set the

• Title

• Install Destination

• Don’t be cruel

• Description

Allow the users to choose the install destination if possible
Use descriptions for your notes

BASIC PACKAGING

• Set the

• Destination

• Package Version

• Make sure Package
Identifier is unique

Increment Package version to upgrade the previous payload - Identifier must be the same

BASIC PACKAGING

• Do you need to...

• Restart?

• Only if Needed

• Require Admin authentication?

• Installing in /Users/ or /tmp
or

If you donʼt need to restart, donʼt. extra hassle for users
Admin Auth: If your not sure, drag the app/component to install location. Does it ask for auth?

BASIC PACKAGING

• Unchecked items are
not installed.

• Set

• Permissions

• Owner & Group

BASIC PACKAGING

• Add Script if used

• Preflight Runs
Before Script

• Postflight Runs After
Script

• Add script resources
to “Scripts directory”

Scripts Directory resources are installed into the Contents/Resources of the package.

EVENTS PACKAGING

• Finds New and Modified Files for You in Real Time

• Does not survive Restarts

• Can capture unwanted files

EVENTS PACKAGING

• Choose Project Menu
& Add Snapshot
Package

• Install Software

• Stop Capture

EVENTS PACKAGING

• Choose Project Menu
& Add Snapshot
Package

• Install Software

• Stop Capture

• Uncheck boxes to
remove files

EVENTS PACKAGING

• Same settings as Basic
Package

• Double Check Payload

SNAPSHOT PACKAGING

• Find Filesystem Differences

• Can capture unwanted files

• Can handle restarts

COMPOSER SNAPSHOTS

• Choose Snapshot
Method

COMPOSER SNAPSHOTS

• Choose Snapshot
Method

• Set Package Name

COMPOSER SNAPSHOTS

• Choose Snapshot
Method

• Set Package Name

• First Snapshot is taken

COMPOSER SNAPSHOTS

• Choose Snapshot
Method

• Set Package Name

• First Snapshot is taken

• Install Software

COMPOSER SNAPSHOTS

• Second Snapshot is
taken

• Remove unwanted files

• Package is built

COMMAND LINE PACKAGING

• Scriptable

• Advanced

• Easily Repeatable

DEMO TIME

ICEBERG

FIREFOX/CHROME

PAYLOAD FREE

ADVANCED PACKAGES...

REQUIREMENTS

• Require Minimum
Resources

Also on choice requirments

ACTIONS

• Pre and Post Install

• Workflow style

PAYLOAD LOCATION

• Internal (Default)

• Same Level

• Custom Path

• HTTP URL

• Removable Media

Payload can sit in multiple places.

SCRIPTS

• Perl, Shell, Python, Ruby

• Variables

• Includes

• Preinstall & Postinstall
only 10.5+

Most common languages are Perl and Shell

Scripts have variables to help

You can call other included files/scripts/apps - They are located in the .pkg/Contents/Resources/ folder

Important: In Mac OS X v10.5 clients, the only install operations available are preinstall and postinstall.

Note: Consider defining preinstall and postinstall actions on the product package (see “Product Package Actions Pane”) instead of preinstall and
postinstall operation in component packages. The latter are inherently less secure and, therefore, causes the warning described earlier.

SHELL VARIABLES

• $0 = Path to this Script

• $1 = Destination path of where package is being installed

• $2 = Path to the Target Location

• $3 = Mountpoint of the destination volume

PERL VARIABLES

• $0 = Path to this script

• $ARGV[0] = Path to the Package being installed

• $ARGV[1] = Destination path of where package is being
installed

• $ARGV[2] = Mountpoint of the destination volume

• $ARGV[3] = Path to the directory containing the System

PAYLOAD FREE

• Run a script

• Doesn’t install anything

• Easier for Users to Run

• Scripts receives target volume path ($3)

PAYLOAD FREE

• % touch emptyfile

• Add to PackageMaker

• Uncheck Contents

• Add Post Install script

PAYLOAD FREE

• % touch emptyfile

• Add to PackageMaker

• Uncheck Contents

• Add Post Install script

PAYLOAD FREE

• Iceberg is
Easier

POST-PACKAGING

INSTALLED PACKAGES

• List installed packages by Unique Identifier 10.6 Only

• pkgutil --pkgs

• History of Installed Packages 10.6+

• /Library/Receipts/InstallHistory.plist

VERIFY INSTALLATION

• Package Receipt Locations

• 10.6 ≥ /var/db/receipts/

• 10.5 ≤ /Library/Receipts/

LIST BILL OF MATERIALS
(BOM)

• 10.5
lsbom -p UGMsF /Library/Receipts/boms/com.org.app.bom

• 10.6
lsbom -p UGMsF /var/db/receipts/com.org.app.bom

• Files may be changed with postflight scripts

FORCE REINSTALL

• Remove Old Files

• Remove Receipt

• sudo pkgutil --forget com.org.pkg --volume /

MAINTAINING PACKAGES

• Use Version Numbers

• Use Component Package

• Easier to edit Script

• Save PackageMaker (Or Other) Project File (.pmdoc)

• Reusable settings (Permissions, Destination, Scripts)

PACKAGE NAMES & VERSIONS

$ find /path/to/some/folder -name *pkg |while IFS= read -r x; \
do echo -n "${x##/*/} "; grep -A1 CFBundleShortVersionString "$x/Contents/Info.plist" | \
sed '/string/!d;s@^.*<string>\([^<]*\)</string>.*$@\1@g'; done

$ find /Volumes/iTunes\ 8.1.1 -name *pkg |while IFS= read -r x; \
do echo -n "${x##/*/} "; grep -A1 CFBundleShortVersionString "$x/Contents/Info.plist" | \
sed '/string/!d;s@^.*<string>\([^<]*\)</string>.*$@\1@g'; done

iTunes.mpkg 8.1.1
AppleMobileDeviceSupport.pkg 2.3
CoreFP.pkg 1.3
iTunesAccess.pkg 8.1
iTunesX.pkg 8.1.1

http://forums.macosxhints.com/showthread.php?t=101838

script fails when package doesn’t have a *.pkg/Contents/Info.plist file. Instead they have a *pkg/some.pkg/PackageInfo file.

TOOLS TO EXAMINE OR EDIT
PACKAGES

Flat Package
Editor

XAR Tool

Finder

Pacifist

Terminal

Bundle Flat

http://charlessoft.com/
Flat Package Editor in PackageMaker Resources in Developer Tools

FUTURE PACKAGING

THE LUGGAGE

• Makefiles with Payloads/Scripts Referenced

• Easy to Review Packages

• Easy to Rollback Changes (SVN)

http://luggage.apesseekingknowledge.net/

RESOURCES

TOOLS

IceBerg, Packages, Pacifist, InstallEase
http://s.sudre.free.fr/Packaging.html

http://blog.macadmincorner.com/mac-software-packaging-
utilities-list/

REFERENCES

Apple Software Delivery Guide
http://tinyurl.com/SoftwareDeliveryGuide

PackageMaker User Guide
http://tinyurl.com/PackageMakerUG

MacEnterprise: Packaging for Sys Admins
http://tinyurl.com/MacTechPackaging

PACKAGING GUIDES

Sudre PackageMaker How To
http://s.sudre.free.fr/Stuff/PackageMaker_Howto.html

Sudre Flat Package Missing Documentation
http://s.sudre.free.fr/Stuff/Ivanhoe/FLAT.html

Rusty Myers rzm102@psu.edu

@thespider

Q & A

