
Goal: show how GitLab is an attactive option for DevOps
workflows
Especially for smaller organizations with smaller budgets

Intro to GitLab
DevOps on a Shell Script

Budget

Joke about name

Mac Justice
Slack, Tweets, etc.:

@macjustice

I'm going to break this into two parts
An overview of GitLab, the product

What's GitLab?

How I got into using GitLab, and what I do with it

How I use GitLab

GitLab is a web app, core feature is
hosting git repos
GitHub competitor
Open Source, developed in the open
on GitLab.com
Gitlab.com
Self-Hosted < Most popular
Freemium
Frequently updated

What's GitLab?

Here's some of the high level features
Just like with GitHub, you can store
git repos there
Clone, push, etc.
Browse and edit in browser
Definition of "Project" in GitLab

Again like GitHub, you can create merge requests, so you
and your team can review changes going into production.

If your merges have conflicts, you can resolve them right in
the browser

Built in Issue Tracker, like Jira or FogBugz
You can attach issues to commits, CI
builds, merge requests
Assign them to members of your team

And there's even a neat Trello style Kanban board for
visualizing your open issues.

One of my personal favorites is the CI
pipeline tool
Like Jenkins, but different
more to come

And for kicks there's even a container registry

So let's talk really quick about what it takes to run your own
GitLab server.

How do I get it?

At Synapse we host GitLab on an Ubuntu VM in our
VMware cluster, most common Linux flavors are
supported
Docker container
Reccomend trying AWS or Digital Ocean if you want a
running GitLab instance set up in just a minute or two.
Raspberry Pi

Installation
• "Omnibus" package for Linux

• Docker Container

• Pre-built VMs (Amazon EC2/LightSail, Digital
Ocean)

Community edition has all the features I'm going to
describe today.
We upgraded to Starter after 5 years of use for support
and some additional permissions control

Self-Hosted Pricing

Edition Price Support Features

Community Free 'Community' All major
functionality

Enterprise
Starter

$40/user/year Next Day Finer
permissions

Enterprise
Premium

$200/user/year 4 Hour High
Availability,
other advanced
features

More than one
At Synapse, we use G Suite SAML for employee login,
cross-referenced with LDAP for group permissions.
Synapse customers use Google Oauth via the
OmniAuth feature.

Authentication &
Authorization
• LDAP

• OAuth & SAML

• Kerberos

Prebuilt integrations for the major chat services
So you can get notifications for pipelines
completed or issues assigned to you

Integrations
Chat

You're not required to use GitLab's CI, if you already have
one you like you can tie it in.

Integrations
External CI

I don't use Kubernetes myself, but GL has been spending a
lot of resources making sure GL is closely integrated.

Integrations
Kubernetes

That's the general overview, now I'm going to give you
details on how I use it.

How I use GitLab

The firmware developers I work with need a version
control system, and since many work with embedded
Linux they're very comfortable with git.
So, they looked into setting up a central git repo host.

First, Synapse used Gitolite, a free open source tool
which gets the job done but with very few frills.
It has no GUI, so user interaction is strictly via ssh. It's
pretty much just a git host with access control features.

2009?

Around 2012, Synapse was getting bigger, we
needed a better tool: collaboration, web UI, etc.
We picked GitLab largely because it was free and
easy to set up.
Also because the guy doing the choosing liked Rails.

2012

In the following years, I had set up Munki and was
interested in keeping my repo in git.
If you're not familiar with how Munki is structured,
a repo is generally composed of a bunch of plist
files and packages.
The plists are easy to track with git
But git doesn't like big files like packages.

Here's my first git-enabled munki setup
Problems
Very manual
Easy to accidentally conflict pkg changes
with another user, if they didn't sync up
with the git host AND server first

2014: GitLab & Munki 1.0

Other people wanted to track big files with git,
too
Git Fat, Git Annex
GitHub announced Git LFS, and shortly afterward
GitLab announced they would support it.

INTERLUDE: Git LFS

Because Git is designed for text files, it's not great at
managing binary files, especially large ones.

Git + = !

Git LFS, however, does just fine

Git LFS + = !

Here's a rough sketch of how LFS works.
Enabling it in a GitLab project is as simple as clicking a checkbox
and making sure you have sufficient space on your server. You
can limit how much space each project has for LFS storage.
Git LFS can handle pretty big files. The biggest I've had cause to
use was a 7.7GB El Capitan AutoDMG image, which was no
trouble at all.

Installing git lfs is easy. It's available on brew and
MacPorts, or you can download the binary from GitHub.
the second command modifies your global git config to
support LFS

Git LFS Example
Local Installation

brew install git-lfs
git lfs install

Now that LFS is installed, you can just go to a repo and tell it which files to track. The
pattern is added to .gitattributes, and once you commit that change you're in business.

Git LFS Example
Repo Setup

cd munki-repo

git lfs track "*.pkg"

git add .gitattributes

git commit -m "Added LFS tracking for PKGs"

From here it's as easy as using standard git commands to commit, push
and pull.
I tend to use MunkiAdmin for day to day work, so I make my changes
there and commit them in a separate git app. Fork is my current
favorite.

Git LFS Example
Everyday Use
git add pkgs/SweetApp.pkg

git commit -m "Added SweetApp"

git push origin master

Back to the story
Our GitLab hadn't gotten any attention for a few
years, so I got it upgraded to current, with the new
logo, so I could get some of that sweet sweet LFS
First thing I did was rebuild my Munki workflow.

2016

Here was the new workflow. It was
pretty good!
Cron on server
Everything was in LFS
Collaboration worked!

2016

Now another interlude, I want to explain CI, and GitLab's
approach.

INTERLUDE: CI

In software development, CI means you push
your code, and it gets tested.
Essentially though, CI tools are really a simple
automation tool
When X happens, do Y

Continuous Integration
1.Push code to GitLab ⌨ ⬆

2.Do something with that code ⚙ $

3.Report results % ✅

The difference between CI and CD is more conceptual
than anything.
The main difference between these is whether you want
a human at the end giving the thumbs up.

Continuous Deployment/
Delivery
1.Push code to GitLab ⌨ ⬆

2.Test that code ⚗ $ % ✅

3.If the tests pass, put it into production ⚙ (

The tools that actually execute the CI tasks are called
runners in GitLab.

CI Runners

There are runners available for every major OS.
Once you have the runner installed, it will wait for GitLab to
assign it jobs. Jobs can be run in sequence or parallel, and can
be anything you can script.
Runners can be shared by many GitLab projects, or you can
create runners reserved for specific projects, if a specific
environment is needed.
You can tag runners, so if a certain job needs a certain
environment, you tag the runner that is configured for it

CI Runners

GitLab CI even supports Docker.
When you configure a runner to use docker, it will start a
container of your choosing to excute a job in.
This is really handy, there's prebuilt containers with
Python or AWS tools ready to use, and you can build
your own and store them on GitLab for use.

CI Runners

The GitLab runner also has an "autoscale" mode, which uses Docker Machine to create
temporary VMs in a cloud provider or other hypervisor. The VMs execute their assigned
jobs, return the results, and are terminated and deleted.

CI Runner Autoscaling

Each task you include in CI is called a
job.
More than one job makes a pipeline.
Pipelines execute in an order you define
Sequential / Parallel
If an earlier stage in the pipeline fails,
the next stage doesn't start

Pipelines

How do you how things went?
All output from a CI job is visible in a
console. Very helpful for troubleshooting.

CI Output

My favorite part about GitLab CI is that you define your CI jobs as code, so changes
to your build process are tracked in git too.
Here's an example of a CI config file. You just add one of these to your repo, and
GitLab will try to start executing CI for your project on an available runner. You can
call scripts and commands, specify stage order, set variables, pass files between
stages, and lots more.

CI Configuration
.gitlab-ci.yml
validate:

 stage: test

 script: lint_roller.sh

roll_out:

 stage: deploy

 only: master

 script:

 - ./sound_klaxons_and_flash_lights.py

 - rsync build/* user@remote_server:/deploy/path/

In this example, I have two jobs, validate and roll-out. Validate is in the test
stage, so it goes first, and it just runs the "check for typos" script. It will run
any time someone pushes a commit to the parent GitLab project.
The second job, Roll-out, is marked as a deploy stage, so it only starts when
all test jobs complete successfully. I specify to only run this job when there
are updates to the master branch, because I don't want to push development
branches to production. Finally, it runs a script, and an inline command.
If both jobs succeed, GitLab CI reports success.

.gitlab-ci.yml, annotated
validate: # first job name
 stage: test # All 'test' stage jobs run before 'deploy' stage
 script: lint_roller.sh # Run this script

deploy: # second job name
 stage: deploy # Start only when all 'test' stage jobs complete
 only: master # Only run on Master branch
 script:
 - ./sound_klaxons_and_flash_lights.py # Call script in repo
 - rsync build/* user@remote_server:/deploy/path/ # inline command

One thing you don't want to do is put secret
information, like private keys or API tokens in git.
CI Secret variables allow your CI jobs to access
the info securely
Passed as Environment Vars to Runner

Secret Variables

Now, you are ready to be taught the new way.

So, now I knew about CI.
Also, I figured out it was dumb to keep catalog files in git
And after going to MacDevOps Vancouver in 2016, I
wanted to start serving my Munki repo from S3,
because it was easy, cheap, and reliable.

2017: TO THE CLOUD

and from there I was off to the races
Imagr
updates to my imagr config, packages, and
images are all tracked in git, distributed to my
site imaging servers

Since the GitLab CI runner supports Mac OS, I set up a runner with an Apple
developer certificate that signs all our configuration profiles. I also added a step to lint
the plists and validate the contents of some fields, like PayloadOrganization. One
time I slipped up and deployed a profile from "Your Org Here" to the whole company.
Next I want to figure out how to make the profiles get added to my Munki repo after
being signed.

Next Steps

? ! ?

AutoPkg is another good use case for CI. I haven't implemented this in GitLab CI myself
yet, but Rick Heil has. You put all your overrides in a repo together, and use a nifty script
from Facebook CPE to commit updated applications to your Munki repo.

!

Synapse is trying to be an Ansible shop. I hope to accellerate
this by automating Ansible Playbook runs through CI.

!kins

Wes explained this at his talk yesterday, which is an integration between Munki, Oomnitza, his inventory tool,
and Jenkins. Jenkins queries the hardware inventory to know who has which computer, and poof suddenly
users have manifests that follow them from computer to computer. Watch his talk when it's posted, it was great.

Mookins

So why do all this?

So

Using GitLab and CI makes it much easier to do better IT.
Automation is good, but the more you can control the execution
environment, the more reliable it is. With GitLab CI, it's really easy. You
set up your runner environment, and then just send your tasks to it.

Automatic

You get to see exactly what changed, who changed it, and when. You get
your git history, as well as the execution transcripts of every job sent to CI.

Accountable

"Hey, are you on the server?" Nobody likes that question. By routing our workflows
through GitLab, anybody can jump in the process. If our work conflicts, we find out
before it gets into production.

Collaborative

References
• PSU MacAdmins 2017

• Tom Bridge - Munki Mistakes Made Right

• Lucas Hall - Managing MacOS without MacOS (almost)

• Wesley Whetstone - Continuous Integration: An automation
framework for Mac Admins.

• Rick Heil - Advanced Munki Infrastructure: Moving to Cloud
Services

• MacDevOps:YVR 2016

• Tim Sutton on Jenkins CI

• Wade Robson on Munki & S3

http://macdevops.ca/MDO2016/jenkins/Default.html
http://matx.ca/mdoyvr/2016/day2/munkimiddleware/Default.html

Thanks!
Twitter: @macjustice

MacAdmins Slack: macjustice
Wherever: macjustice

Q & A

