
Reporting with MunkiReport
John Eberle (@tuxudo) and Rick Heil (@refreshingapathy)

John: Mac Admin @ University of Pittsburgh

@tuxudo

@tuxudo

github.com/tuxudo

Rick: Senior IT Manager @ Myelin

@refrshingapathy

@refreshingapathy

github.com/rickheil

What is MunkiReport?

?

?
?

?

?

Originally designed as a reporting system for
Munki

Fan Speeds

Temperatures

WiFi Networks

Location

Time Machine Backups

FileVault Keys

Local Admins

Disk Usage

SMART Information

Pending Installs

Display Serial Numbers

Battery Health

Sleep Assertions

Caching Server
SSH Logins

SIP Status

Xprotect Updates

Certificates

Munki Keys

Installed Fonts

USB Devices

GPU Models

Extension CodesigningNetwork Share Path

Printers

Hardware Age

GSX Lookups

DeployStudio Image Data

Highest Supported OS

CrashPlan Status

SCCM Checkins

ARD Text

AD/OD Binding

Boot ROM Version Homebrew MalwareBytes

Thermal Load

Profiles

Server Metrics

Software Updates

User Sessions

Software Inventory

Application Usage

Similar to

Created and maintained by Arjen van Bochoven

Open Source

• Over 2,750 commits
• 36 Contributors
• More than 33,000 lines of code
• Always looking for new ideas
• Pull requests are always welcome! :D

Community Interaction

• Github issues - for help and feature requests
• Visit #munkireport channel on MacAdmins Slack
• Post to munkireport Google Group
• Send @bochoven baked goods

What does it do?

?

?
?

?

?

Main features

• Gather data from clients
• Store data in database
• Provide export of data to CSV
• Display data in the web interface

MunkiReport UI

• Dashboard
- Main landing page and full of widgets

• Reports
- Groupings of similar widgets

• Listings
- Sortable, filterable tables containing data

about machines
• Client tabs

- Sections containing data for a particular
machine

Demo

!

!
!

!

!

How can this be used in the real world?

• Assist in remote troubleshooting
• Software inventory
• Asset management
• Security / compliance checking

Server Installation

• Requirements
- A web server

- PHP 5.4 or higher with pdo-sqlite2 and libxml
• Download latest release from GitHub, extract,

configure, and upload to webroot

Docker container is available!

Client Installation

• Curl install script into bash
• Make a client package and install via Munki
• Setup AutoPKG(r) to make client package and

import into Munki

Demo

!

!
!

!

!

Instance Security

• Install with client package method
• If using SQLite, protect the file
• Should use HTTPS
• Set passphrase to limit clients
• Enable reCaptcha
• Use authentication

Integrations

• Supports many authentication methods and roles
- No authentication, Local/Hashed, Active

Directory, LDAP

• Database types
- Local sqlite or MySQL

• External integrations
- Google Maps, GSX, DeployStudio

Expandability

• JSON API
• Localizable
• Machine groups
• Business units

Modules

What's a module?

• Bundles of PHP and scripts
• Installed on clients or server side only
• Modular in installation and extendability
• Easy to make and update

Core Parts of a Module

• Model
• Controller
• Provides
• Locales

Model

• Model is the powerhouse of the module
• Creates database table
• Processes incoming client data
• Recalls and processes data for widgets

Model

Controller

• Main purpose is to control access to model’s
functions and data stored within the module’s
table
• Responsible for the module’s API hooks
• Passes data from model’s widget functions to

widgets using JSON API calls

Controller

Provides

• Instructs MunkiReport to load listings, widgets,
and client tabs
• Required if the module has any UI elements

Provides

Locales

• JSON files containing translations for UI
elements
• Required if making a listing, widget, or client

tab
• Only translate into your native language(s),

contributors will translate your locale file

Locales

UI Parts of a Module

• Listing

• Client tab

• Widget

Listing

• Comprised of a static HTML table that is
generated and filled by JavaScript
• Table contents pulled from controller via

internal JSON call
• Not every module needs a listing
• Can have more than one per module

Listing

Client Tab

• Shows data for a single machine in the client
overview page
• Pull data from the model through the controller

via API call
• Can be static HTML table filled with JavaScript

or dynamically generated JavaScript tables
• Not every module needs a client tab
• Can have more than one per module

Client Tab

Widget

• Are displayed on the dashboard
• Processed data is pulled from model through

controller via API call
• Mostly written in HTML and JavaScript
• Modules can have multiple or no widgets
• Do not have to pull data from MunkiReport; ie

can show weather information or pull from
external data source

Widget

Client Parts of a Module

• Install script

• Uninstall script

• Main data gathering script
• Cache file

Install Script

• Run by MunkiReport installer on client
• Downloads main script and sets its permissions
• Activates module on the client by setting the

cache file in the MunkiReport.plist
• Required in all but advanced cases

Install Script

Uninstall Script

•Runs on client when the module is disabled and
the MunkiReport installer is run
•Deletes the data gathering script and the cache
file
•Required in all but advanced cases

Uninstall Script

Main Data Gathering Script

• Is executed when preflight is run, either
manually or by Munki
•Runs as root
•Can be any script or binary that macOS supports
•Must complete in less than 10 seconds or
MunkiReport will kill it
•Required in all but advanced cases

Main Data
Gathering Script

Cache File

• File that is uploaded to MunkiReport server for
processing by model
• Only one per module
• Does not have to be a file generated by the

main script; ie can be any file on the client
• Should be kept small to limit network traffic

and timeouts

Cache File

Mega Module Pack

Machine Orientation

Launch Agents
Trackpad Touchpoints

Local Weather

Audio Amplification
Thunderbolt Devices

iOS Devices

FireWire

Radio Interference

App Store Apps

Launch Daemons

TouchBar

Liquid Sensors

System Voltages

Mouse Tracking
Slack Integration

FileMaker Assets

Skype for Business

User Lunch
User Backgrounds

Eye of Sauron

LOM Status

Module App Store

Email Notifications
Xsan

User Feedback

Bees?

Jamf Pro

Demo

!

!
!

!

!

Questions?
Feedback URL:

https://bit.ly/psumac2017-160

